Answer:
they move towards the positive side... that's option 2
<span>The electric force is given by:
F = [ k*(q1)*(q2) ] / d^2
F = Electric force
k = Coulomb's constant
q1 = Charge of one proton
q2 = Charge of second proton
d = Distance between centers of mass
Values:
F = unknown
k = 8.98E 9 N-m^2/C^2
q1 = 1.6E-19
q2 = 1.6E-19
d = 1.0E-15 m
Insert values into F = [ k*(q1)*(q2) ] / d^2
F = [ (8.98E 9 N-m^2/C^2) * (1.6E-19) * (1.6E-19) ] / (1.0E-15 m)^2
F = </span>229.888 N
answer
the electric force of repulsion between nuclear protons is 229.888 N
Answer:
None of the transitions in the hydrogen atom corresponds to a photon energy of 5eV hence no photon of this energy is absorbed or emitted by the hydrogen atom.
Explanation:
Electrons in a hydrogen atom must be in one of the allowed energy levels. If an electron is in the first energy level, it must have exactly -13.6 eV of energy. If it is in the second energy level, it must have -3.4 eV of energy and so on.
If the electron wants to jump from the first energy level, n = 1, to the second energy level n = 2. The second energy level has higher energy than the first, so to move from n = 1 to n = 2, the electron needs to gain energy. It needs to gain (-3.4) - (-13.6) = 10.2 eV of energy to be excited to the second energy level.
The step from the second energy level to the third is much smaller. It takes only 1.89 eV of energy for this excitation to take place. It takes even less energy to excite electrons in hydrogen from the third energy level to the fourth, and even less from the fourth to the fifth.
None of these transitions in the hydrogen atom corresponds to a photon energy of 5eV hence no photon of this energy is absorbed or emitted by the hydrogen atom.
At STP, 1 mole of an ideal gas occupies a volume of about 22.4 L. So if <em>n</em> is the number of moles of this gas, then
<em>n</em> / (19.2 L) = (1 mole) / (22.4 L) ==> <em>n</em> = (19.2 L•mole) / (22.4 L) ≈ 0.857 mol
If the sample has a mass of 12.0 g, then its molecular weight is
(12.0 g) / <em>n</em> ≈ 14.0 g/mol
Extinction of a species is most likely to occur as a result of "<span>environmental changes"
In short, Your Answer would be Option D
Hope this helps!</span>