10,000.
or
0.0001 one ten-thousandth
The limit does not exist. Why? Because the left hand limit DOES NOT equal the right hand limit. Let’s double check:
We could use -0.000001 to represent the left hand limit. This is less than 0. We plug in 5x - 8
5(-0.000001) - 8
-0.000005 - 8
-8.000005
If we would continue the limit (extend the zeros to infinity), we would get exactly
-8
That is our left hand limit.
Our right hand limit will be represented by 0.000001. This is greater than 0. We plug in abs(-4 - x)
abs(-4 - (0.000001))
abs(-4.000001)
4.000001
If we would continue the limit (extend the zeros to infinity), we would get exactly
4
4 does not equal -8, therefore
The limit does not exist
If there isn't a base, the base is 10 :)
Let L be the length
Let w be the width
Let p be the perimeter
L+w+L+w=p
L=w+20
3L+2w+3L+2w=240
Sub the first equation in for L in the second equation and solve for w
3(w+20)+2w+3(w+20)+2w=240
3w+60+2w+3w+60+2w=240
10w+120=240
10w=240-120
10w=120
W=120/10
W=12
Sub w into the first equation and solve for L
L=w+20
L=12+20
L=32
Hope this helps!
-4(-x-10)= 4x• 40
11g+4-6g+7s-10 =16g+6-7s
3(10+9x)+11-3x= 13x+19