Answer:
a) The Z -value 2.397 < 2.576 at 99% or 0.01% level of significance
Null hypothesis is accepted at 0.01% level of significance
<em>They score is above 24 on the math portion of the exam</em>
<em>b) </em>
<u><em>Null Hypothesis</em></u>: There is no significance difference between the college level mathematics and math courses in high school
H₀: μ = 24
<u>Alternative Hypothesis: </u>H₁: μ ≠ 24
<u>Step-by-step explanation:</u>
<u><em>Step(i)</em></u>:-
Given random sample 'n' = 250
Given data sample mean x⁻ = 24.5
Standard deviation = 3.3
<u><em>Null Hypothesis</em></u>: There is no significance difference between the college level mathematics and math courses in high school
H₀: μ = 24
<u>Alternative Hypothesis: </u>H₁: μ ≠ 24
test statistic
![Z = \frac{x^{-} - mean}{\frac{S.D}{\sqrt{n} } }](https://tex.z-dn.net/?f=Z%20%3D%20%5Cfrac%7Bx%5E%7B-%7D%20-%20mean%7D%7B%5Cfrac%7BS.D%7D%7B%5Csqrt%7Bn%7D%20%7D%20%7D)
![Z = \frac{24.5 - 24}{\frac{3.3}{\sqrt{250} } } = \frac{0.5}{0.2087} = 2.397](https://tex.z-dn.net/?f=Z%20%3D%20%5Cfrac%7B24.5%20-%2024%7D%7B%5Cfrac%7B3.3%7D%7B%5Csqrt%7B250%7D%20%7D%20%7D%20%3D%20%5Cfrac%7B0.5%7D%7B0.2087%7D%20%3D%202.397)
a) 99% or 0.01% level of significance
Level of significance ∝ = 0.01
![Z_{\frac{\alpha }{2} } = Z_{\frac{0.01}{2} } = Z_{0.005} =2.576](https://tex.z-dn.net/?f=Z_%7B%5Cfrac%7B%5Calpha%20%7D%7B2%7D%20%7D%20%3D%20Z_%7B%5Cfrac%7B0.01%7D%7B2%7D%20%7D%20%3D%20Z_%7B0.005%7D%20%3D2.576)
The Z -value 2.397 < 2.576 at 99% or 0.01% level of significance
Null hypothesis is accepted at 0.01% level of significance
<em>They score is above 24 on the math portion of the exam</em>
b) 95% or 0.05% level of significance
Level of significance ∝ = 0.05
![Z_{\frac{\alpha }{2} } = Z_{\frac{0.05}{2} } = Z_{0.025} = 1.96](https://tex.z-dn.net/?f=Z_%7B%5Cfrac%7B%5Calpha%20%7D%7B2%7D%20%7D%20%3D%20Z_%7B%5Cfrac%7B0.05%7D%7B2%7D%20%7D%20%3D%20Z_%7B0.025%7D%20%3D%201.96)
The Z -value 2.397 > 1.96 at 95% or 0.05% level of significance
Null hypothesis is Rejected at 0.05% level of significance
<em>They score is below 24 on the math portion of the exam</em>