Answer:
In triangle QNP and QNM
3.QN=QN[common side]
so triangle QNP and QNM is CONGRUENT by A.A .S axiom.
Answer: 0.025
Step-by-step explanation:
Given : A statistics professor plans classes so carefully that the lengths of her classes are uniformly distributed between the interval [48.0 minutes, 58.0 minutes].
The probability density function :-

Now, the probability that a given class period runs between 50.25 and 50.5 minutes is given by :-
![\int^{50.5}_{50.25}\ f(x)\ dx\\\\=\int^{50.5}_{50.25}\ \dfrac{1}{10}\ dx\\\\=\dfrac{1}{10}|x|^{50.5}_{50.25}\\\\=\dfrac{1}{10}\ [50.5-50.25]=\dfrac{1}{10}\times(0.25)=0.025](https://tex.z-dn.net/?f=%5Cint%5E%7B50.5%7D_%7B50.25%7D%5C%20f%28x%29%5C%20dx%5C%5C%5C%5C%3D%5Cint%5E%7B50.5%7D_%7B50.25%7D%5C%20%5Cdfrac%7B1%7D%7B10%7D%5C%20dx%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B10%7D%7Cx%7C%5E%7B50.5%7D_%7B50.25%7D%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B10%7D%5C%20%5B50.5-50.25%5D%3D%5Cdfrac%7B1%7D%7B10%7D%5Ctimes%280.25%29%3D0.025)
Hence, the probability that a given class period runs between 50.25 and 50.5 minutes =0.025
Similarly , the probability of selecting a class that runs between 50.25 and 50.5 minutes = 0.025
Answer:
It would be 649
Step-by-step explanation:
118 ÷ 2= 59
59 x 11= 649
Answer:
The answer is 3
Step-by-step explanation:
First write the equation as you see it.
-11b+7=40
Then switch the take away seven from the left side then place it in the right side but as a minus.
-11b=40-7
Next do the math on the right side.
-11b=33
Once you have done that you divide the number on right with the number on the left which leaves you with the answer.
b=-3
Hope this helped :)
Yes both rates are equivalent