Answer:
A
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
Calculate m using the slope formula
m = 
with (x₁, y₁ ) = (4, - 1) and (x₂, y₂ ) = (- 2, 3)
m =
=
= -
, thus
y = -
x + c ← is the partial equation
To find c substitute either of the 2 points into the partial equation
Using (- 2, 3) , then
3 =
+ c ⇒ c = 3 -
= 
y = -
x +
← in slope- intercept form
Multiply through by 3 to clear the fractions
3y = - 2x + 5 ( add 2x to both sides )
2x + 3y = 5 ( subtract 5 from both sides )
2x + 3y - 5 = 0 ← in general form