Picture related to the question is attached below
Answer:
Kendra should have divided by 2 instead of multiplying by 2
Step-by-step explanation:
40 percent = percentage who plan to attend
100% = total percentage of student
From the question ;
When reducing percentages, division is employed and this the equation should be :
40/2 ÷ 100/2
40/2 * 2/100
20 * 1/50
20/50
= 0.4
0.4 * 50
= 20 students
You can compute both the mean and second moment directly using the density function; in this case, it's

Then the mean (first moment) is
![E[X]=\displaystyle\int_{-\infty}^\infty x\,f_X(x)\,\mathrm dx=\frac1{80}\int_{670}^{750}x\,\mathrm dx=710](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20x%5C%2Cf_X%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cfrac1%7B80%7D%5Cint_%7B670%7D%5E%7B750%7Dx%5C%2C%5Cmathrm%20dx%3D710)
and the second moment is
![E[X^2]=\displaystyle\int_{-\infty}^\infty x^2\,f_X(x)\,\mathrm dx=\frac1{80}\int_{670}^{750}x^2\,\mathrm dx=\frac{1,513,900}3](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20x%5E2%5C%2Cf_X%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cfrac1%7B80%7D%5Cint_%7B670%7D%5E%7B750%7Dx%5E2%5C%2C%5Cmathrm%20dx%3D%5Cfrac%7B1%2C513%2C900%7D3)
The second moment is useful in finding the variance, which is given by
![V[X]=E[(X-E[X])^2]=E[X^2]-E[X]^2=\dfrac{1,513,900}3-710^2=\dfrac{1600}3](https://tex.z-dn.net/?f=V%5BX%5D%3DE%5B%28X-E%5BX%5D%29%5E2%5D%3DE%5BX%5E2%5D-E%5BX%5D%5E2%3D%5Cdfrac%7B1%2C513%2C900%7D3-710%5E2%3D%5Cdfrac%7B1600%7D3)
You get the standard deviation by taking the square root of the variance, and so
![\sqrt{V[X]}=\sqrt{\dfrac{1600}3}\approx23.09](https://tex.z-dn.net/?f=%5Csqrt%7BV%5BX%5D%7D%3D%5Csqrt%7B%5Cdfrac%7B1600%7D3%7D%5Capprox23.09)
Answer:
The equation would be y = 5/6x - 3
Step-by-step explanation:
0.6 repeating (AKA 0.6666666-----)
Answer:
5$
Step-by-step explanation:
I am Majoring in math