5 is in the hundreds column as the largest number would be 76 5(is the hundred) 43
Given:
g(x) = (1/3)x + 2
Part (a)
To find the inverse:
Set y = g(x) = (1/3)x + 2
Swap x and y.
x = (1/3)y + 2.
Solve for y.
(1/3)y = x - 2
y = 3(x - 2).
Set g⁻¹(x) to y.
Answer: g⁻¹(x) = 3(x - 2)
Part (b)
Create the table shown below to graph g(x) and g⁻¹(x).
x g(x) g⁻¹(x)
---- --------- ---------
-8 - 2/3 - 30
-6 0 - 24
-4 2/3 - 18
-2 4/3 - 12
0 2 - 6
2 8/3 0
4 4/3 6
6 4 12
8 14/3 18
Note that when x = -6, g(x) = 0, so that (-6, 0) lies on he black liine.
Therefore the inverse function should yield (0, -6) to be correct. This is so, so g⁻¹ is correct.
Both g(x) and g⁻¹(x)satisfy the vertical line test, so both are functions.
Part (c)
Algebraically, we know that g⁻¹(x) is correct if g(g⁻¹(x)) = x
Use function composition to obtain
g(g⁻¹(x)) = (1/3)*(3x - 6) + 2
= x - 2 + 2
= x
Therefore g⁻¹(x) is correct.
Answer:
a) Decrease
b) New mean = 78.43
c) Decrease
Step-by-step explanation:
We are given the following in the question:
Total number of students in class = 28
Average of 27 students = 79
Standard Deviation of 27 students = 6.5
New student's score = 63
a) The new student's score will decrease the average.
b) New mean


New mean =

Thus, the new mean is 78.43
c) Since the new mean decreases, standard deviation for new scores will decrease.
This is because the new value is within the usual values i.e. within two standard deviations of the mean. So, this wont cause a lot of variation as this value will be closer to already available data values. Also number of observations (n) in the denominator is increasing. Based on both these points we can conclude that standard deviation will decrease
Formula for Standard Deviation:
where
are data points,
is the mean and n is the number of observations.
Answer:

Step-by-step explanation:
The first number is 
We simplify to get:
The second number is
.
This number can be rewritten as 
This is not an integer
The third number is 
We simplify to get: 
This is also an integer.
The correct answer is
.
Answer: The slope (m) of the line using two points where the line goes through is:
m = - 4 (negative 4).
Solution:
m=(y2-y1) / (x2-x1)
Taking two points in the graph where the line goes through:
P1=(0,2)=(x1,y1)→x1=0, y1=2
P2=(1,-2)=(x2,y2)→x2=1, y2=-2
Replacing in the formula of the slope:
m=(-2-2) / (1-0)
m=(-4) / (1)
m=-4