Answer:
y = 6x + 0
Step-by-step explanation:
Equation of a line
y = mx + c
Given
( 0 , 0) ( -1/2 , -3)
find the slope m
m = y2 - y1 / x2 - x1
x1 = 0
y1 = 0
x2 = -1/2
y2 = -3
Insert the values
m = y2 - y1 / x2 - x1
m = -3 - 0 / -1/2 - 0
= -3/-1/2
Minus cancels minus
= 3/1/2
= 3/1 ÷ 1/2
= 3/1 × 2/1
= 6/1
= 6
m = 6
Substitute any of the two points given into the equation of a line
y = mx + c
Where
y - intercept point y
x - intercept point x
m - slope of the line
c - intercept
(-1/2 , -3)
x = -1/2
y = -3
-3 = 6(-1/2) + c
-3 = -6/2 + c
-3 = -3 + c
-3 + 3 = c
c = 0
y = 6x + 0
The equation of the line is
y = 6x + 0
The first thing we must do for this case is to find the equation of the line.

We have then:

We choose an ordered pair:

Substituting values:
From here we conclude:
Intersection with y:
We evaluate x = 0 in the function:
Slope of the line:
Point (-2, -5):
We evaluate the value of x = -2 and the value of y = -5

The equation is satisfied.
Point (8, 0):
It is part of the table, therefore belongs to the line.
Answer:
The slope is 1/2
The y-intercept is -4.
The points (-2, -5) and (8, 0) are also on the line.
Answer:
option c 1000
Step-by-step explanation:
...................
You just multiply the x value by 5
-2(5)=-10
-1(5)=-5
0(5)=0
3(5)=15
6(5)=30
9(5)=45
The equation is
8x +7=125