1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergeeva-Olga [200]
3 years ago
11

How do you find sin20°cos40°+cos20°sin40°

Mathematics
1 answer:
Tems11 [23]3 years ago
3 0

That's of course the sum angle formula for sine

sin(a+b) = sin a cos b + cos a sin b

We have a=20°  b=40°

sin 20° cos 40° + cos 20° sin 40°

= sin(20°+40°)

= sin(60°)

= √3/2

Answer: √3/2

You might be interested in
The table shows the number of points that each student lost on the first math test is question on the test was worth an equal nu
vazorg [7]
Micheal answered 3 wrong.
Nythia answered 4 wrong.
Raul answered 1 wrong.
Tonya answered 7 wrong.

The other student lost 36 points.
7 0
3 years ago
Read 2 more answers
Can someone help me do this
Tomtit [17]

Step-by-step explanation:

the angle is greater than 180 degrees so it makes it an obtuse triangle

6 0
2 years ago
10) Solve the inequality for x.
Stella [2.4K]

Answer:

it is D

Step-by-step explanation:

4 0
2 years ago
Read 2 more answers
Between the time Iko woke up and lunchtime, the temperature rose by 11°. Then by the time he went to bed, the temperature droppe
Tanzania [10]

Answer:             -3 degrees

Step-by-step explanation:

Lets say that the original temperature was "x."

The temperature rose by 11 degrees so it is now at 11+x.

Then the temperature fell by 14 degrees so you subtract. 11+x-14

11-14= -3 so you subtract 3 degrees from the original temperature and there fore the relative temperature is -3

I hope this helps!!!

4 0
3 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Other questions:
  • I don’t quite understand this
    5·1 answer
  • I don't know how to do a math problem because I really am really bad at math so I was wondering if somebody can help me and my m
    14·2 answers
  • This table gives a few (x,y) pairs of a line in the coordinate plane
    5·1 answer
  • Please help me I need an urgent help
    6·1 answer
  • Use formulas to find the lateral area and surface area of the given prism. Round your answer to the nearest whole number. The fi
    6·1 answer
  • Can someone help me with question 1 and 2 please​
    11·2 answers
  • Y = 3/2x + 3 <br> What is the y-intercept?
    12·1 answer
  • Suppose c&gt;d. explain why the following inequalities are true:
    8·1 answer
  • Write an equation of the line containing the given point and parallel to the given line. ​(6​,−5​); 7x−9y=4
    9·1 answer
  • Fiona has $18 to spend. She spent $4.25, including tax, to buy a notebook. She needs to save $9.75, but she wants to buy a snack
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!