Answer:
The answer is C.
Explanation:
Net Primary Productivity is a term that is used to express the difference between CO2 that is taken in by the plant with photosynthesis minus CO2 that the plant releases.
The two forest sites given in the example may not have the same biodiversity and the same species of plants so we can't be sure of option B.
Again for the same reasons, we can't be sure of option D because we do not know the specific plant species in each forest since they are in different areas.
Option A can be ruled out for the same reasons, the lack of information about the forest sites, since we do not know the death rate of the plants in either of the forests.
Option C can be true because forest A has a higher net primary productivity rate which can be an indication of lower respiratory activity hence lower CO2 production, resulting in the given higher net primary productivity.
I hope this answer helps.
An organism that obtains energy and nutrients by feeding on other organisms or their remains. A food web is a model of the feeding relationships between many different consumers and producers in an ecosystem. Without plants (the primary producers) consumers and decomposers would not be able to live. Producers always start every food chain. A consumer, also called a heterotroph, is an organism that cannot make its own food. It must eat producers or other organisms for energy.
not all but most of them do
If the atoms that are bonding have identical electronegativities, then it's a completely nonpolar covalent bond. This doesn't happen in the real world unless the two atoms are of the same element. In a practical sense, any two elements with an electronegativity difference less than 0.3 is considered to be nonpolar covalent.
As the difference between the atoms increases, the covalent bond becomes increasingly polar. At a polarity difference of 1.7 (this changes depending on who you ask) we consider it no longer to be a covalent bond and to be the electrostatic interactions characteristic in an ionic compound.
Just so you know, you shouldn't take these values as exact. ALL interactions between adjacent atoms involve some sharing of electrons, no matter how big the difference in electronegativity. Sure, you wouldn't expect much sharing in KF, but there's a little sharing of electrons anyway. There's certainly no big cutoff that happens at a difference of 1.7 Pauling Electronegativity units.
DNA opens up and each strand is used as template for a new strand.