Lets be a price of the calculator - $ a
then , after using the coupon, you need to pay $(a-18)
and after using 15% discount , you need to pay (1-0.15)a=0.85a
then, if
(a-18) will be more than 0.85a, you should prefer 0.15 % discount, because it will be cheaper,
a-18> 0.85a
a-0.85a>18
0.15a > 18
a>120, that means that if the price of the calculator more than $120, 15% discount is better,
but if the price of the calculator is less than $120, you should choose $ 18 coupon.
for example, we have the price of the calculator $100
100-18=82,
100*0.85 =85, coupon is better.
If the price of the calculator $200
200-18=182,
200*0.85=170, so 15% discount is better
if price of the calculator is $120,
120-18=102
120*0.85=102,
it will not matter, what you are going to use, because you are going to pay the same amount of money
Answer:
10 cm!
I think...it's really basic math so...maybe?
Question 14, Part (i)
Focus on quadrilateral ABCD. The interior angles add to 360 (this is true for any quadrilateral), so,
A+B+C+D = 360
A+90+C+90 = 360
A+C+180 = 360
A+C = 360-180
A+C = 180
Since angles A and C add to 180, this shows they are supplementary. This is the same as saying angles 2 and 3 are supplementary.
==================================================
Question 14, Part (ii)
Let
x = measure of angle 1
y = measure of angle 2
z = measure of angle 3
Back in part (i) above, we showed that y + z = 180
Note that angles 1 and 2 are adjacent to form a straight line, so we can say
x+y = 180
-------
We have the two equations x+y = 180 and y+z = 180 to form this system of equations

Which is really the same as this system

The 0s help align the y terms up. Subtracting straight down leads to the equation x-z = 0 and we can solve to get x = z. Therefore showing that angle 1 and angle 3 are congruent. We could also use the substitution rule to end up with x = z as well.