Note:
The slope of a straight line passing through the points (x₁, y₁) and (x₂, y₂) is

The two given points are (-3,4) and (4,-1). Therefore the slope is

Answer:
Step-by-step explanation:
area of rectangle = l × h
= 9 × y
= 72
9 × y = 72
y = 72÷9
y = 8cm
area of circle = 50.27cm²
total area of the logo = 2(50.27) + 72
= 100.54 + 72
= 172.54cm²
Answer:
The graph of y = f(-x) is a reflection of the graph of y = f(x) in the x-axis. ⇒ False
The graph of y = -f(x) is a reflection of the graph of y = f(x) in the y-axis. ⇒ False
Step-by-step explanation:
<em>Let us explain the reflection about the axes</em>
- If a graph is reflected about the x-axis, then the y-coordinates of all points on it will opposite in sign
Ex: if a point (2, -3) is on the graph of f(x), and f(x) is reflected about the x-axis, then the point will change to (2, 3)
- That means reflection about the x-axis change the sign of y
- y = f(x) → reflection about x-axis → y = -f(x)
- If a graph is reflected about the y-axis, then the x-coordinates of all points on it will opposite in sign
Ex: if a point (-2, -5) is on the graph of f(x), and f(x) is reflected about the y-axis, then the point will change to (2, -5)
- That means reflection about the y-axis change the sign of x
- y = f(x) → reflection about y-axis → y = f(-x)
<em>Now let us answer our question</em>
The graph of y = f(-x) is a reflection of the graph of y = f(x) in the x-axis.
It is False because reflection about x-axis change sign of y
The graph of y = -f(x) is a reflection of the graph of y = f(x) in the x-axis
The graph of y = -f(x) is a reflection of the graph of y = f(x) in the y-axis.
It is False because reflection about y-axis change sign of x
The graph of y = f(-x) is a reflection of the graph of y = f(x) in the y-axis