1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
valina [46]
3 years ago
9

What is the area of the Kite?

Mathematics
1 answer:
SVEN [57.7K]3 years ago
5 0
Kite Area = (diagonal1 * diagonal2) / 2
Kite Area = (30 * 4) / 2
Kite Area = 60 square feet


You might be interested in
Which expressions are equivalent to 2(4f + 2g)?
andreyandreev [35.5K]

Answer:

For example, 8f + 4g is one of the most used expression

Another example is 4 (2f + g), is correct too

8 0
2 years ago
What's the inequality for |u|-2<5
Andrew [12]

Answer:

0 ≤ u < 7 and 0 > u > - 7 and combining those two we get - 7 < u < 7.

Step-by-step explanation:

The given inequality is |u| - 2 < 5 ....... (1)

We have to solve this inequality.

Now, from the definition of f(x) = |x| we get, f(x) = x, when x ≥ 0 and  

f(x) = -x when x < 0.

Hence, for u ≥ 0, the equation of inequality (1) becomes  

u - 2 < 5

⇒ u < 7

Therefore, the solution is 0 ≤ u < 7 (Answer)

Again, for u < 0, the equation of inequality (1) becomes

- u - 2 < 5

⇒ u + 2 > - 5

⇒ u > - 7

Therefore, the solution becomes 0 > u > - 7 (Answer)

6 0
4 years ago
Given a regular square pyramid with RS = 6 and PX = 4, find the following measure.<br><br> PY =
Dennis_Churaev [7]

Answer:

PY=5\ units

Step-by-step explanation:

we know that

Applying the Pythagoras Theorem

PY^{2}=PX^{2}+XY^{2}

In this problem we have that

XY=RS/2=6/2=3\ units

PX=4\ units

substitute

PY^{2}=4^{2}+3^{2}

PY^{2}=25

PY=\sqrt{25}\ units

PY=5\ units

5 0
4 years ago
Read 2 more answers
I honestly need help with these
Brilliant_brown [7]

9. The curve passes through the point (-1, -3), which means

-3 = a(-1) + \dfrac b{-1} \implies a + b = 3

Compute the derivative.

y = ax + \dfrac bx \implies \dfrac{dy}{dx} = a - \dfrac b{x^2}

At the given point, the gradient is -7 so that

-7 = a - \dfrac b{(-1)^2} \implies a-b = -7

Eliminating b, we find

(a+b) + (a-b) = 3+(-7) \implies 2a = -4 \implies \boxed{a=-2}

Solve for b.

a+b=3 \implies b=3-a \implies \boxed{b = 5}

10. Compute the derivative.

y = \dfrac{x^3}3 - \dfrac{5x^2}2 + 6x - 1 \implies \dfrac{dy}{dx} = x^2 - 5x + 6

Solve for x when the gradient is 2.

x^2 - 5x + 6 = 2

x^2 - 5x + 4 = 0

(x - 1) (x - 4) = 0

\implies x=1 \text{ or } x=4

Evaluate y at each of these.

\boxed{x=1} \implies y = \dfrac{1^3}3 - \dfrac{5\cdot1^2}2 + 6\cdot1 - 1 = \boxed{y = \dfrac{17}6}

\boxed{x = 4} \implies y = \dfrac{4^3}3 - \dfrac{5\cdot4^2}2 + 6\cdot4 - 1 \implies \boxed{y = \dfrac{13}3}

11. a. Solve for x where both curves meet.

\dfrac{x^3}3 - 2x^2 - 8x + 5 = x + 5

\dfrac{x^3}3 - 2x^2 - 9x = 0

\dfrac x3 (x^2 - 6x - 27) = 0

\dfrac x3 (x - 9) (x + 3) = 0

\implies x = 0 \text{ or }x = 9 \text{ or } x = -3

Evaluate y at each of these.

A:~~~~ \boxed{x=0} \implies y=0+5 \implies \boxed{y=5}

B:~~~~ \boxed{x=9} \implies y=9+5 \implies \boxed{y=14}

C:~~~~ \boxed{x=-3} \implies y=-3+5 \implies \boxed{y=2}

11. b. Compute the derivative for the curve.

y = \dfrac{x^3}3 - 2x^2 - 8x + 5 \implies \dfrac{dy}{dx} = x^2 - 4x - 8

Evaluate the derivative at the x-coordinates of A, B, and C.

A: ~~~~ x=0 \implies \dfrac{dy}{dx} = 0^2-4\cdot0-8 \implies \boxed{\dfrac{dy}{dx} = -8}

B:~~~~ x=9 \implies \dfrac{dy}{dx} = 9^2-4\cdot9-8 \implies \boxed{\dfrac{dy}{dx} = 37}

C:~~~~ x=-3 \implies \dfrac{dy}{dx} = (-3)^2-4\cdot(-3)-8 \implies \boxed{\dfrac{dy}{dx} = 13}

12. a. Compute the derivative.

y = 4x^3 + 3x^2 - 6x - 1 \implies \boxed{\dfrac{dy}{dx} = 12x^2 + 6x - 6}

12. b. By completing the square, we have

12x^2 + 6x - 6 = 12 \left(x^2 + \dfrac x2\right) - 6 \\\\ ~~~~~~~~ = 12 \left(x^2 + \dfrac x2 + \dfrac1{4^2}\right) - 6 - \dfrac{12}{4^2} \\\\ ~~~~~~~~ = 12 \left(x + \dfrac14\right)^2 - \dfrac{27}4

so that

\dfrac{dy}{dx} = 12 \left(x + \dfrac14\right)^2 - \dfrac{27}4 \ge 0 \\\\ ~~~~ \implies 12 \left(x + \dfrac14\right)^2 \ge \dfrac{27}4 \\\\ ~~~~ \implies \left(x + \dfrac14\right)^2 \ge \dfrac{27}{48} = \dfrac9{16} \\\\ ~~~~ \implies \left|x + \dfrac14\right| \ge \sqrt{\dfrac9{16}} = \dfrac34 \\\\ ~~~~ \implies x+\dfrac14 \ge \dfrac34 \text{ or } -\left(x+\dfrac14\right) \ge \dfrac34 \\\\ ~~~~ \implies \boxed{x \ge \dfrac12 \text{ or } x \le -1}

13. a. Compute the derivative.

y = x^3 + x^2 - 16x - 16 \implies \boxed{\dfrac{dy}{dx} = 3x^2 - 2x - 16}

13. b. Complete the square.

3x^2 - 2x - 16 = 3 \left(x^2 - \dfrac{2x}3\right) - 16 \\\\ ~~~~~~~~ = 3 \left(x^2 - \dfrac{2x}3 + \dfrac1{3^2}\right) - 16 - \dfrac13 \\\\ ~~~~~~~~ = 3 \left(x - \dfrac13\right)^2 - \dfrac{49}3

Then

\dfrac{dy}{dx} = 3 \left(x - \dfrac13\right)^2 - \dfrac{49}3 \le 0 \\\\ ~~~~ \implies 3 \left(x - \dfrac13\right)^2 \le \dfrac{49}3 \\\\ ~~~~ \implies \left(x - \dfrac13\right)^2 \le \dfrac{49}9 \\\\ ~~~~ \implies \left|x - \dfrac13\right| \le \sqrt{\dfrac{49}9} = \dfrac73 \\\\ ~~~~ \implies x - \dfrac13 \le \dfrac73 \text{ or } -\left(x-\dfrac13\right) \le \dfrac73 \\\\ ~~~~ \implies \boxed{x \le 2 \text{ or } x \ge \dfrac83}

5 0
2 years ago
Find the area of the figure. Use 3.14 for a.<br> HELP ME PLSS
4vir4ik [10]
16*16= 256 meters squared ( the rectangle)
100. 53 is the area of the semi circle.
356.53 meters squared is the area of the whole figure because you add the area of the rectangle and the semi circle
6 0
3 years ago
Other questions:
  • Still have to times it by 20%
    6·2 answers
  • What is the solution to this system of equations ?
    7·1 answer
  • Type the correct answer in each box. Round numbers to the nearest tenth, if necessary.
    8·2 answers
  • Un fabricante de ventanas cuadradas cobra a razón de 3 euros por cada metro de marco y 12 euros por el cristal, sean cuales sean
    12·1 answer
  • So far this semester, Warren is averaging a score of 72 points on math tests, which is 20% lower than his average last semester.
    11·2 answers
  • What is the measure of n?
    13·1 answer
  • Harder than it sounds<br><br> 6/3(1+1)<br><br> Hint: Use PEMDAS
    9·2 answers
  • Please help!!!! I am going to fail!!! I will mark you brainiest!
    8·1 answer
  • Find the value of x 2-x7=25
    8·1 answer
  • HELP ILL GIVE BRAINLY
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!