Answer:Given:
P(A)=1/400
P(B|A)=9/10
P(B|~A)=1/10
By the law of complements,
P(~A)=1-P(A)=399/400
By the law of total probability,
P(B)=P(B|A)*P(A)+P(B|A)*P(~A)
=(9/10)*(1/400)+(1/10)*(399/400)
=51/500
Note: get used to working in fraction when doing probability.
(a) Find P(A|B):
By Baye's Theorem,
P(A|B)
=P(B|A)*P(A)/P(B)
=(9/10)*(1/400)/(51/500)
=3/136
(b) Find P(~A|~B)
We know that
P(~A)=1-P(A)=399/400
P(~B)=1-P(B)=133/136
P(A∩B)
=P(B|A)*P(A) [def. of cond. prob.]
=9/10*(1/400)
=9/4000
P(A∪B)
=P(A)+P(B)-P(A∩B)
=1/400+51/500-9/4000
=409/4000
P(~A|~B)
=P(~A∩~B)/P(~B)
=P(~A∪B)/P(~B)
=(1-P(A∪B)/(1-P(B)) [ law of complements ]
=(3591/4000) ÷ (449/500)
=3591/3592
The results can be easily verified using a contingency table for a random sample of 4000 persons (assuming outcomes correspond exactly to probability):
===....B...~B...TOT
..A . 9 . . 1 . . 10
.~A .399 .3591 . 3990
Tot .408 .3592 . 4000
So P(A|B)=9/408=3/136
P(~A|~B)=3591/3592
As before.
Step-by-step explanation: its were the answer is
$142.60 for all three employees
Answer:
14 in^3.
Step-by-step explanation:
The volume = volume of the bottom prism + volume of the top pyramid
= area of base * height of the prism + 1/3 * area of base * height of the pyramid
= 2 * 1.5 * 4 + 1/3 * (2*1.5) * 2
= 3*4 + 1/3 * 6
= 14 in^3.
Answer:
The critical value is T = 1.895.
The 90% confidence interval for the mean repair cost for the washers is between $48.159 and $72.761
Step-by-step explanation:
We have the standard deviation for the sample, so we use the t-distribution.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 8 - 1 = 6
90% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 6 degrees of freedom(y-axis) and a confidence level of
. So we have T = 1.895, which is the critical value.
The margin of error is:

In which s is the standard deviation of the sample and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 60.46 - 12.301 = $48.159
The upper end of the interval is the sample mean added to M. So it is 60.46 + 12.301 = $72.761
The 90% confidence interval for the mean repair cost for the washers is between $48.159 and $72.761