The acceleration of the SRB and main engine during the first 2.0 minutes of flight is 52.16 m/s².
The given parameters;
- <em>initial velocity of the engine, u = 1341 m/s</em>
- <em>final velocity of the engine, v = 7600 m/s</em>
- <em>time of motion, t = 2 minutes = 2 x 60 s = 120 s</em>
The acceleration of the SRB and main engine is calculated as follows;

Thus, the acceleration of the SRB and main engine during the first 2.0 minutes of flight is 52.16 m/s².
Learn more here:brainly.com/question/17067013
To solve this problem it is necessary to apply the concepts related to Malus' law. Malus' law indicates that the intensity of a linearly polarized ray of light that passes through a perfect analyzer with a vertical optical axis is equivalent to:

Indicates the intensity of the light before passing through the Polarizer,
I = The resulting intensity, and
= Indicates the angle between the axis of the analyzer and the polarization axis of the incident light.
There is 3 polarizer, then
For the exit of the first polarizer we have that the intensity is,

For the third polarizer then we have,

Replacing with the first equation,



Therefore the transmitted intensity now is
of the initial intensity.
Well energy absorption by a material depends upon their atomic properties. Energy is absorbed in discrete quanta of energy as predicted by quantum mechanics only if the corresponding energy state is available either it is absorbed by electrons or nucleus depends whether it can go to permissible energy state, if not system can't absorb energy at all.
Force
or motion im not toatally sure