Answer:
The point (0, 1) represents the y-intercept.
Hence, the y-intercept (0, 1) is on the same line.
Step-by-step explanation:
We know that the slope-intercept form of the line equation
y = mx+b
where
Given
Using the point-slope form
where
- m is the slope of the line
In our case:
substituting the values m = 2/3 and the point (-6, -3) in the point-slope form
Subtract 3 from both sides
comparing with the slope-intercept form y=mx+b
Here the slope = m = 2/3
Y-intercept b = 1
We know that the value of y-intercept can be determined by setting x = 0, and determining the corresponding value of y.
Given the line
at x = 0, y = 1
Thus, the point (0, 1) represents the y-intercept.
Hence, the y-intercept (0, 1) is on the same line.
Answer:
,
,
Step-by-step explanation:
we know that
A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form or
Find the value of the constant of proportionality k
take any ordered pair from the data
For x=25, y=160
substitute the values of x and y
simplify
The linear equation is equal to
or
Answer:
I think it's 50
Step-by-step explanation:
48
49
50
51
52
50 8s inbetween the two
<span>304.688. Take 25% of 406.25, which is 101.562 and then subtract it from 406.25.</span>
Answer:
B
Step-by-step explanation:
because it is (5,15) and B is (5,15)