Put it in the form
ax^2 + bx + c = 0
use the quadratic formula
x = [ -b + sqrt( b^2 - 4 ac ) ] / 2a
x = [ -b - sqrt( b^2 - 4 ac ) ] / 2a
7v^2 - 7v - 22 = 0
a = 7
b = -7
c = -22
v = [ 7 + sqrt ( 49 - 4 * 7 ( -22) ] / 2 * 7 = 2.34
v = [ 7 - sqrt ( 49 - 4 * 7 ( -22) ] / 2 * 7 = -1.34
D. -4/3
Let's solve your equation step-by-step.
9x2+24x+20=4
Step 1: Subtract 4 from both sides.
9x2+24x+20−4=4−4
9x2+24x+16=0
Step 2: Factor left side of equation.
(3x+4)(3x+4)=0
Step 3: Set factors equal to 0.
3x+4=0 or 3x+4=0
x=
−4
/3
Hope This helps
C: none of these are solutions to the given equation.
• If<em> y(x)</em> = <em>e</em>², then <em>y</em> is constant and <em>y'</em> = 0. Then <em>y'</em> - <em>y</em> = -<em>e</em>² ≠ 0.
• If <em>y(x)</em> = <em>x</em>, then <em>y'</em> = 1, but <em>y'</em> - <em>y</em> = 1 - <em>x</em> ≠ 0.
The actual solution is easy to find, since this equation is separable.
<em>y'</em> - <em>y</em> = 0
d<em>y</em>/d<em>x</em> = <em>y</em>
d<em>y</em>/<em>y</em> = d<em>x</em>
∫ d<em>y</em>/<em>y</em> = ∫ d<em>x</em>
ln|<em>y</em>| = <em>x</em> + <em>C</em>
<em>y</em> = exp(<em>x</em> + <em>C </em>)
<em>y</em> = <em>C</em> exp(<em>x</em>) = <em>C</em> <em>eˣ</em>
Answer:
x1= -6.6 x2= 8.6
Step-by-step explanation: