Hi!!
The answer to your question is asking us to make an algerbraic equation for this situation.
H = 5V
Also, H + V = 52,000. H and V can then be solves by solving the 2 equations.
The results are 43,333 and 8,667
If you still don't understand message me
If you do plz brainlest
70% all you have to do is divide the 14 by 20
Answer:
a. 6
b. 9
Step-by-step explanation:
a. The product modulo 7 can be found from the product of the individual numbers modulo 7:
(88·95·36·702) mod 7 = (88 mod 7)·(95 mod 7)·(36 mod 7)·(703 mod 7) mod 7
= (4·4·1·3) mod 7 = 48 mod 7 = 6
__
b. Powers of 4 mod 11 repeat with period 5:
4 mod 11 = 4
4^2 mod 11 = 5
4^3 mod 11 = 9
4^4 mod 11 = 3
4^5 mod 11 = 1
So, 4^83 mod 11 = 4^3 mod 11 = 9
Answer:
g²/f⁷h
Step-by-step explanation:
Because f⁹-f²=f⁷ which leaves f⁷ on the bottom, g³-g=g² which leaves g² on the top, and h⁵-h⁴=h which leaves h on the bottom.