Answer: Food Chain
Explanation: In a food chain, energy is passed from one link to another. Many organisms cannot make their own food, so rely on eah other for nourishment.
Explanation:
According to Bohr's postulates, the electron in the present in the lower energy level can absorb energy and exits to higher energy level. Also, when this electron returns back to its orbit, it emits some energy.
Since the hydrogen consists of 1 electron and 1 proton. The lowest energy configuration of the hydrogen is when n =1 or, when the electron is present in the K-shell or the ground state.
The possible transition for the electron given in the question is :
n = 2, 3 and 4
The schematic diagram of the hydrogen atom consisting of these four quantum levels in which the electron can jump (Absorption) and comeback to from these energy levels (emission) .
Answer:
See explanation
Explanation:
Hello there!
In this case, since the the concentrations are not given, and not even the Ksp, we can solve this problem by setting up the chemical equation, the equilibrium constant expression and the ICE table only:

Next, the equilibrium expression according to the produced aqueous species as the solid silver chloride is not involved in there:
![Ksp=[Ag^+][Cl^-]](https://tex.z-dn.net/?f=Ksp%3D%5BAg%5E%2B%5D%5BCl%5E-%5D)
And therefore, the ICE table, in which x stands for the molar solubility of the silver chloride:

I - 0 0
C - +x +x
E - x x
Which leads to the following modified equilibrium expression:

Unfortunately, values were not given, and they cannot be arbitrarily assigned or assumed.
Regards!
This attracts bees which, when collecting the nectar, they carry residue pollen on the flower to the next flower, which then pollinates the flowers, hence allowing them to asexually reproduce.
Answer:
(i)The mole fractions are :
(ii)
(iii)ΔG = 1.974kJ
Explanation:
The given equation is :
⇄
Let
be the number of moles dissociated per mole of 
Thus ,
<em>The initial number of moles of :</em>
+
⇄
+ 
And finally the number of moles of ![C[tex] is 0.9Thus ,[tex]3\alpha=0.9\\\alpha=0.3[tex]The final number of moles of:[tex]A = 1-2\alpha=1-2*0.3=0.4mol[tex] [tex]B=2(1-\alpha)=2(1-0.3)=1.4mol[tex][tex]D=1+2\alpha=1+2*0.3=1.6mol[tex]Thus , total number of moles are : 0.4+1.4+0.9+1.6=4.3(i)The mole fractions are : [tex]A=\frac{0.4}{4.3} \\=0.0930](https://tex.z-dn.net/?f=C%5Btex%5D%20is%200.9%3C%2Fp%3E%3Cp%3EThus%20%2C%3C%2Fp%3E%3Cp%3E%5Btex%5D3%5Calpha%3D0.9%5C%5C%5Calpha%3D0.3%5Btex%5D%3C%2Fp%3E%3Cp%3E%3Cem%3E%3Cstrong%3EThe%20final%20number%20of%20moles%20of%3A%3C%2Fstrong%3E%3C%2Fem%3E%3C%2Fp%3E%3Cul%3E%3Cli%3E%3Cem%3E%3Cstrong%3E%5Btex%5DA%20%3D%201-2%5Calpha%3D1-2%2A0.3%3D0.4mol%5Btex%5D%20%3C%2Fstrong%3E%3C%2Fem%3E%3C%2Fli%3E%3C%2Ful%3E%3Cul%3E%3Cli%3E%3Cem%3E%3Cstrong%3E%5Btex%5DB%3D2%281-%5Calpha%29%3D2%281-0.3%29%3D1.4mol%5Btex%5D%3C%2Fstrong%3E%3C%2Fem%3E%3C%2Fli%3E%3C%2Ful%3E%3Cul%3E%3Cli%3E%3Cem%3E%3Cstrong%3E%5Btex%5DD%3D1%2B2%5Calpha%3D1%2B2%2A0.3%3D1.6mol%5Btex%5D%3C%2Fstrong%3E%3C%2Fem%3E%3C%2Fli%3E%3C%2Ful%3E%3Cp%3EThus%20%2C%20total%20number%20of%20moles%20are%20%3A%200.4%2B1.4%2B0.9%2B1.6%3D4.3%3C%2Fp%3E%3Cp%3E%3Cstrong%3E%28i%29The%20mole%20fractions%20are%20%3A%20%3C%2Fstrong%3E%3C%2Fp%3E%3Cul%3E%3Cli%3E%3Cstrong%3E%5Btex%5DA%3D%5Cfrac%7B0.4%7D%7B4.3%7D%20%5C%5C%3D0.0930)
(ii)

Where ,
are the partial pressures of A,B,C,D respectively.
Total pressure = 1 bar .
∴
<em>
</em>
<em>
</em>
<em>
</em>
<em>
</em>

(iii)
Δ
ΔG = 