Answer:
a) The value of absolute minimum value = - 0.3536
b) which is attained at
Step-by-step explanation:
<u>Step(i)</u>:-
Given function
...(i)
Differentiating equation (i) with respective to 'x'
...(ii)
![f^{l}(x) = \frac{2x^{2}-1}{(2x^{2}+1)^{2} }](https://tex.z-dn.net/?f=f%5E%7Bl%7D%28x%29%20%3D%20%5Cfrac%7B2x%5E%7B2%7D-1%7D%7B%282x%5E%7B2%7D%2B1%29%5E%7B2%7D%20%20%7D)
Equating Zero
![f^{l}(x) = \frac{2x^{2}-1}{(2x^{2}+1)^{2} } = 0](https://tex.z-dn.net/?f=f%5E%7Bl%7D%28x%29%20%3D%20%5Cfrac%7B2x%5E%7B2%7D-1%7D%7B%282x%5E%7B2%7D%2B1%29%5E%7B2%7D%20%20%7D%20%3D%200)
![\frac{2x^{2}-1}{(2x^{2}+1)^{2} } = 0](https://tex.z-dn.net/?f=%5Cfrac%7B2x%5E%7B2%7D-1%7D%7B%282x%5E%7B2%7D%2B1%29%5E%7B2%7D%20%20%7D%20%3D%200)
![2 x^{2}-1 = 0](https://tex.z-dn.net/?f=2%20x%5E%7B2%7D-1%20%3D%200)
![2 x^{2} = 1](https://tex.z-dn.net/?f=2%20x%5E%7B2%7D%20%3D%201)
![x^{2} = \frac{1}{2}](https://tex.z-dn.net/?f=x%5E%7B2%7D%20%20%3D%20%5Cfrac%7B1%7D%7B2%7D)
![x = \frac{-1}{\sqrt{2} } , x = \frac{1}{\sqrt{2} }](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B-1%7D%7B%5Csqrt%7B2%7D%20%7D%20%20%2C%20x%20%3D%20%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D)
<u><em>Step(ii):</em></u>-
Again Differentiating equation (ii) with respective to 'x'
put
![x = \frac{1}{\sqrt{2} }](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D)
![f^{ll} (x) > 0](https://tex.z-dn.net/?f=f%5E%7Bll%7D%20%28x%29%20%3E%200)
The absolute minimum value at ![x = \frac{1}{\sqrt{2} }](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D)
<u><em>Step(iii):</em></u>-
The value of absolute minimum value
![f(x) = \frac{-x}{2x^{2} +1}](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Cfrac%7B-x%7D%7B2x%5E%7B2%7D%20%2B1%7D)
![f(\frac{1}{\sqrt{2} } ) = \frac{-\frac{1}{\sqrt{2} } }{2(\frac{1}{\sqrt{2} } )^{2} +1}](https://tex.z-dn.net/?f=f%28%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%20%29%20%3D%20%5Cfrac%7B-%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%20%7D%7B2%28%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%20%29%5E%7B2%7D%20%2B1%7D)
on calculation we get
The value of absolute minimum value = - 0.3536
<u><em>Final answer</em></u>:-
a) The value of absolute minimum value = - 0.3536
b) which is attained at