An even function can be reflected about the y axis and map onto itself
example: y=x^2
an odd function can be reflected about the origin and map onto itself
example: y=x^3
a simple test is the following
if f(x) is even then f(-x)=f(x)
if f(x) is odd then f(-x)=-f(x)
so
even function
subsitute -x for each and see if we get the same function
remember to fully expand these
g(x)=(x-1)^2+1=x^2-2x+1+1=x^2-2x+2 is the original one
g(x)=(x-1)^2+1
g(-x)=(-x-1)^2+1
g(-x)=(1)(x+1)^2+1
g(-x)=x^2+2x+1+1
g(-x)=x^2+2x+2
not same because the original has -2x
not even
g(x)=2x^2+1
g(-x)=2(-x)^2+1
g(-x)=2x^2+1
same, it's even
g(x)=4x+2
g(-x)=4(-x)+2
g(-x)=-4x+2
not the same, not even
g(x)=2x
g(-x)=2(-x)
g(-x)=-2x
not same, not even
g(x)=2x²+1 is the even function
Answer:
The sidewalk moves at 0.5 ft/sec
Josie's speed walking on a non-moving ground is 3.5ft/sec
Step-by-step explanation:
Let x represent the speed of the side walk and y represent her walking speed
It takes Jason's 8-year-old daughter Josie 44 sec to travel 176 ft walking with the sidewalk
Distance = speed × time
176 = (x+y)×44
44x+44y = 176
x+y = 4 .......1
It takes her 7 sec to walk 21 ft against the moving sidewalk in the opposite direction).
21 = (y-x)7
7y - 7x = 21
y - x = 3 ......2
Add equation 1 to 2
2y = 7
y = 3.5 ft/sec
From equation 1
x + y = 4
x = 4 - 3.5 = 0.5
x = 0.5 ft/sec
The sidewalk moves at 0.5 ft/sec
Josie's speed walking on a non-moving ground is 3.5ft/sec
C - (0.40c - 0.15) - (0.60c - 0.20)
I hope this helps :)
Answer:
five trucks per hour
Step-by-step explanation:
Answer:
4
Step-by-step explanation:
WKKSKSK
BEACUSE
2+2=4
bOom