Each division set gives the outcome of the operation 1.45 ÷ 5 which is 0.29.
- The number of hundredths in each division set is <u>D. 9</u>
Reasons:
The given Hunter's model consists of the following
One 10 × 10 number block
Four sets of a column of 10 cubes
Five individual cube pieces
Therefore;
In 1.45, we have;
1 unit
4 tenths
5 hundredths
Which gives;
Each single cube can be used to represent a hundredth in 0.05
One cube = 0.01
Each set of 10 cubes represents a tenth in 0.4
Each block of 10 by 10 can be used to represent the unit; 1
Dividing each of the 10 × 10 can be divided to sets of 20 blocks with a value of 0.2 each
The 4 sets of 10s can be divided by 5 to give sets of 8 with a value of 0.08
The 5 cubes divided 5 gives five cubes with each cube having a value of 0.01.
Therefore;
The value of each division set is 0.2 + 0.08 + 0.01 = 0.29
The number of hundredths in 0.29 = 9
The number of hundredths in each division set is therefore; <u>D. 9</u>
Learn more about number place value here:
brainly.com/question/184672
90 cm because ................................
Answer:
(5, 9)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtract Property of Equality
<u>Algebra I</u>
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define Systems</u>
x - 5y = -40
18x - 5y = 45
<u>Step 2: Rewrite Systems</u>
18x - 5y = 45
- Multiply both sides by -1: -18x + 5y = -45
<u>Step 3: Redefine Systems</u>
x - 5y = -40
-18x + 5y = -45
<u>Step 4: Solve for </u><em><u>x</u></em>
<em>Elimination</em>
- Combine equations: -17x = -85
- Divide -17 on both sides: x = 5
<u>Step 5: Solve for </u><em><u>y</u></em>
- Define equation: x - 5y = -40
- Substitute in <em>x</em>: 5 - 5y = -40
- Isolate <em>y</em> term: -5y = -45
- Isolate <em>y</em>: y = 9
Can’t help if there’s no figure