<h3>
<u>Answer</u><u>:</u><u>-</u></h3>
192 cm²
<h3>
<u>Step</u><u> </u><u>by</u><u> step</u><u> explanation</u><u> </u><u>:</u><u>-</u></h3>
Let us take the height be x , then its side = x + 4. Now half of base will be 12 cm .
<u>According</u><u> to Pythagoras Theorem :- </u>
=> base² + perpendicular ² = hypontenuse ²
=> 12² + x² = (x+4)²
=> 144 + x² = x² + 16 + 8x
=> 8x = 144-16
=> 8x = 128
=> x = 128/8
=> x = 16 cm .
Hence the height of ∆ is 16 cm .So the area will be half the product of base and altitude.
= 1/2 * 16 cm * 24cm .
= 192 cm²
<h3>
<u>★</u><u> </u><u>Hence</u><u> </u><u>the</u><u> </u><u>area</u><u> </u><u>of</u><u> </u><u>the </u><u>tria</u><u>ngle</u><u> is</u><u> </u><u>1</u><u>9</u><u>2</u><u> </u><u>cm²</u><u> </u><u>.</u></h3>
Can't see
Step-by-step explanation:
The rest of the page, upload again?
Hello,
Use the factoration
a^2 - b^2 = (a - b)(a + b)
Then,
x^2 - 81 = x^2 - 9^2
x^2 - 9^2 = ( x - 9).(x + 9)
Then,
Lim (x^2- 81) /(x+9)
= Lim (x -9)(x+9)/(x+9)
Simplity x + 9
Lim (x -9)
Now replace x = -9
Lim ( -9 -9)
Lim -18 = -18
_______________
The second method without using factorization would be to calculate the limit by the hospital rule.
Lim f(x)/g(x) = lim f(x)'/g(x)'
Where,
f(x)' and g(x)' are the derivates.
Let f(x) = x^2 -81
f(x)' = 2x + 0
f(x)' = 2x
Let g(x) = x +9
g(x)' = 1 + 0
g(x)' = 1
Then the Lim stay:
Lim (x^2 -81)/(x+9) = Lim 2x /1
Now replace x = -9
Lim 2×-9 = Lim -18
= -18
Answer:
12/20
Step-by-step explanation:
Answer:
The last one
Step-by-step explanation: