Answer:
a =
Step-by-step explanation:
Given:
f(x) = log(x)
and,
f(kaa) = kf(a)
now applying the given function, we get
⇒ log(kaa) = k × log(a)
or
⇒ log(ka²) = k × log(a)
Now, we know the property of the log function that
log(AB) = log(A) + log(B)
and,
log(Aᵇ) = b × log(A)
Thus,
⇒ log(k) + log(a²) = k × log(a) (using log(AB) = log(A) + log(B) )
or
⇒ log(k) + 2log(a) = k × log(a) (using log(Aᵇ) = b × log(A) )
or
⇒ k × log(a) - 2log(a) = log(k)
or
⇒ log(a) × (k - 2) = log(k)
or
⇒ log(a) = (k - 2)⁻¹ × log(k)
or
⇒ log(a) =
(using log(Aᵇ) = b × log(A) )
taking anti-log both sides
⇒ a =
Answer: option d.
Step-by-step explanation:
To solve this problem you must keep on mind the properties of logarithms:

Therefore, knowing the properties, you can write the expression gven in the problem as shown below:

Then, the answer is the option d.
Answer:
75.2
Step-by-step explanation:
16 x 9.4 = 150.4 / 2 = 75.2
Answer:
1.20%
Step-by-step explanation:
1.50-30=20
2.15000