Given:
Consider the below picture attached with this question.
The given expression is:

To find:
The next step.
Solution:
We have,

Cancel out the common factors.

Therefore, the correct option is D.
Answer: He has 287 home runs
Step-by-step explanation:
Let's define:
H = home runs of Hank
J = home runs of Jones.
We know that:
H = 2*J - 181
H = 755
Then we can replace the second equation into the first one:
755 = 2*J - 181
(755 - 181)/2 = J
287 = J
Complete Question
The complete question is shown on the first uploaded image
Answer:
The solution is 
Step-by-step explanation:
From the question we are told that

and 
Generally the absolute value of the determinant of the Jacobian for this change of coordinates is mathematically evaluated as
![| \frac{\delta (x,y)}{\delta (u, v)} | = | \ det \left[\begin{array}{ccc}{\frac{\delta x}{\delta u} }&{\frac{\delta x}{\delta v} }\\\frac{\delta y}{\delta u}&\frac{\delta y}{\delta v}\end{array}\right] |](https://tex.z-dn.net/?f=%7C%20%5Cfrac%7B%5Cdelta%20%20%28x%2Cy%29%7D%7B%5Cdelta%20%28u%2C%20v%29%7D%20%7C%20%3D%20%20%7C%20%5C%20det%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%7B%5Cfrac%7B%5Cdelta%20x%7D%7B%5Cdelta%20u%7D%20%7D%26%7B%5Cfrac%7B%5Cdelta%20x%7D%7B%5Cdelta%20v%7D%20%7D%5C%5C%5Cfrac%7B%5Cdelta%20y%7D%7B%5Cdelta%20u%7D%26%5Cfrac%7B%5Cdelta%20y%7D%7B%5Cdelta%20v%7D%5Cend%7Barray%7D%5Cright%5D%20%7C)
![= |\ det\ \left[\begin{array}{ccc}{-2e^{-2u} cos(5v)}&{-5e^{-2u} sin(5v)}\\{-2e^{-2u} sin(5v)}&{-2e^{-2u} cos(5v)}\end{array}\right] |](https://tex.z-dn.net/?f=%3D%20%7C%5C%20det%5C%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%7B-2e%5E%7B-2u%7D%20cos%285v%29%7D%26%7B-5e%5E%7B-2u%7D%20sin%285v%29%7D%5C%5C%7B-2e%5E%7B-2u%7D%20sin%285v%29%7D%26%7B-2e%5E%7B-2u%7D%20cos%285v%29%7D%5Cend%7Barray%7D%5Cright%5D%20%20%7C)

So
![\frac{\delta (x,y)}{\delta (u, v)} | = |det \left[\begin{array}{ccc}a&b\\c&d\\\end{array}\right] |](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cdelta%20%20%28x%2Cy%29%7D%7B%5Cdelta%20%28u%2C%20v%29%7D%20%7C%20%3D%20%7Cdet%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da%26b%5C%5Cc%26d%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%7C)
=> 
substituting for a, b, c,d
=> 
=> 
=> 
So anybody know the answer yet cuz i don’t
I'm assuming that the line is JKL in order of the points from left to right.
JK + KL = JL
(17-x) + (2x-7) = JL
Simplify.
10-x = JL