Answer:
N must a negitve number.
Step-by-step explanation:
They opposite would be positive. Anything positive is bigger than a negitve
Answer:
3 and 9
if f(x)=x^2+13 and g(x)=12x-14
Step-by-step explanation:
So when we are looking for the intersection of two functions, we are trying to figure out when they are the same. When you think same, you should think equal (=).
So we want to find when f(x)=g(x) for x.
f(x)=g(x)

Let's get everything to one side.
Subtracting 12x and adding 14 to both sides.

I'm going to reorder the left hand side and also simplify the 13+14 part:

Now since the coefficent of x^2 is just 1 our job is to find two numbers that multiply to be 27 and add up to be -12.
Those numbers are -3 and -9 since -3(-9)=27 and -3+(-9)=-12.
So the factored form of our equation is

Since the product is 0, then at least one of the factors must be 0.
So we want to solve both x-3=0 and x-9=0.
x-3=0 can be solved by adding 3 on both sides. This gives us x=3.
x-9=9 can be solved by adding 9 on both sides. This gives us x=9.
The intersection of f and g happens at x=3 or x=9.
Answer:
25 months
Step-by-step explanation:
quick math
Answer:
The maximum revenue is $900, obtained with 30 people
Step-by-step explanation:
Naturally, the answer should be a number equal or higher than 20, because up to 20 persons, each one pays the same. Lets define a revenue function for x greater than or equal to 20.
f(x) = x*(40-(x-20)) = -x²+60x
Note that f multiplies the number of persons by how much would they pay (here, assuming that there are more than 20).
f is quadratic with negative main coefficient and its maximum value will be reached at the vertex.
The value of the x coordinate of the vertex is -b/2a = -60/-2 = 30
for x = 30, f(x) = 30*(40-(30-20))=30*30=900
So the maximum revenue is $900.
Step-by-step explanation:
Use triangle congruency:
BC=EC, AC=DC - Given
m∠DCE = m∠ACB because they are vertical angles
Therefore ΔABC ≅ ΔDEC because of Side-Angle-Side congruency
AB=DE because corresponding parts of congruent triangles are also congruent (CPCTC)