there are many combinations for it, but we can settle for say
![\bf \begin{cases} f(x)=x+2\\[1em] g(x)=\cfrac{9}{x^2}\\[-0.5em] \hrulefill\\ (f\circ g)(x)\implies f(~~g(x)~~) \end{cases}\qquad \qquad f(~~g(x)~~)=[g(x)]+2 \\\\\\ f(~~g(x)~~)=\left[ \cfrac{9}{x^2} \right]+2\implies f(~~g(x)~~)=\cfrac{9}{x^2}+2](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%20f%28x%29%3Dx%2B2%5C%5C%5B1em%5D%20g%28x%29%3D%5Ccfrac%7B9%7D%7Bx%5E2%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20%28f%5Ccirc%20g%29%28x%29%5Cimplies%20f%28~~g%28x%29~~%29%20%5Cend%7Bcases%7D%5Cqquad%20%5Cqquad%20f%28~~g%28x%29~~%29%3D%5Bg%28x%29%5D%2B2%20%5C%5C%5C%5C%5C%5C%20f%28~~g%28x%29~~%29%3D%5Cleft%5B%20%5Ccfrac%7B9%7D%7Bx%5E2%7D%20%5Cright%5D%2B2%5Cimplies%20f%28~~g%28x%29~~%29%3D%5Ccfrac%7B9%7D%7Bx%5E2%7D%2B2)
Answer:
understand it lol
Step-by-step explanation:
Answer:
the last one is true
Step-by-step explanation:
sin R=PQ/PR=TS/TR
By concepts of polynomials and systems of linear equations, the constants c and d of the expression p(x) = x⁴ - 5 · x³ - 7 · x² + c · x + d are 29 and 30.
<h3>How to determine the missing coefficients of a quartic equation</h3>
A value x is a root of a polynomial if and only if p(x) = 0. We must replace the given equation with the given roots and solve the resulting system of <em>linear</em> equations:
(- 1)⁴ - 5 · (- 1)³ - 7 · (- 1)² + (- 1) · c + d = 0
- c + d = 1 (1)
3⁴ - 5 · 3³ - 7 · 3² + 3 · c + d = 0
3 · c + d = 117 (2)
The solution of this system is c = 29 and d = 30.
By concepts of polynomials and systems of linear equations, the constants c and d of the expression p(x) = x⁴ - 5 · x³ - 7 · x² + c · x + d are 29 and 30.
To learn more on polynomials: brainly.com/question/11536910
#SPJ1