Answer:3
Step-by-step explanation:
Answer: A) 1260
Step-by-step explanation:
We know that the number of combinations of n things taking r at a time is given by :-

Given : Total multiple-choice questions = 9
Total open-ended problems=6
If an examine must answer 6 of the multiple-choice questions and 4 of the open-ended problems ,
No. of ways to answer 6 multiple-choice questions
= 
No. of ways to answer 4 open-ended problems
= 
Then by using the Fundamental principal of counting the number of ways can the questions and problems be chosen = No. of ways to answer 6 multiple-choice questions x No. of ways to answer 4 open-ended problems
= 
Hence, the correct answer is option A) 1260
To produce at a point lying inside the production possibilities curve would require economic growth.
<h3>What is
production possibilities curve ?</h3>
The production possibilities curve can be described as a graph that help to display the different combinations of output which can be gotten from given current resources and technology.
In this case, To produce at a point lying inside the production possibilities curve would require economic growth.
Learn more about production possibilities curve on:
brainly.com/question/26460726
#SPJ4
It would be 113 because 5x113 would equal 565
Answer: #13: Domain = (-∞,∞) Range = (-∞,0]
#14: Domain = (-∞,∞), Range = (-∞,∞)
Step-by-step explanation: The domain is all possible x values for a graph and the range is all possible y values.