1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lynna [10]
3 years ago
11

Integral cos(3x)^3sen(3x)^7dx

Mathematics
1 answer:
Dmitry [639]3 years ago
5 0

One way to do this is to exploit the Pythagorean identity,

\cos^2x+\sin^2x=1

to rewrite

\cos^3(3x)=\cos(3x)\cos^2(3x)=\cos(3x)(1-\sin^2(3x))

so that

\displaystyle\int\cos^3(3x)\sin^7(3x)\,\mathrm dx=\int\cos(3x)\left(\sin^7(3x)-\sin^9(3x)\right)\,\mathrm dx

Then substitute u=\sin(3x) and \frac{\mathrm du}3=\cos(3x)\,\mathrm dx to get the integral

\displaystyle\frac13\int u^7-u^9\,\mathrm du=\frac13\left(\frac{u^8}8-\frac{u^{10}}{10}\right)+C

=\boxed{\dfrac{\sin^8(3x)}{24}-\dfrac{\sin^{10}(3x)}{30}+C}

which is one correct form of the antiderivative. There's no reason we can't use the identity from before to express the integrand in terms of powers of cos(3x) instead.

You might be interested in
Please answer this question! 30 points and brainliest!
Darya [45]

That you and her have a 50% chance of winning.

3 0
4 years ago
I need help with question 2-4
Tresset [83]
Question 2 is 250  idk about 4

5 0
3 years ago
Do the data suggest that after training people can correctly predict coin toss outcomes better than the 50 percent expected by c
kumpel [21]

Answer:

Since the calculated value of t = 0.01145 does not fall in the critical region ║t║≥ t (0.025,19) = 2.093 so we accept H0 the data suggests that after training people can correctly predict coin toss outcomes better than the 50 percent expected by chance guessing alone.

<u />

Step-by-step explanation:

Researchers want to see whether training increases the capability of people to correctly predict the outcomes of coin tosses. Each of twenty people is asked to predict the outcome (heads or tails) of 100 independent tosses of a fair coin. After training, they are retested with a new set of 100 tosses. (All 40 sets of 100 tosses are independently generated). The numbers correct for each of the 20 people were as follows:

a. Do the data suggest that after training people can correctly predict coin toss outcomes better than the 50 percent expected by chance guessing alone? Give appropriate statistical evidence to support your claim.

Score Before Training Score After Training

(number correct) (number correct)              Difference              d²

46                        61                                        -15                        225

48                        62                                    -  14                        196

50                        53                                       -3                         9

54                         46                                       8                        64

54                         50                                       4                      16

54                           52                                     2                       4

54                            53                                    1                         1

54                           59                                  -5                        25

54                          60                                   -6                        36

54                           61                                   -7                        49

55                           55                                   0                         0

56                          59                                    -3                       9

57                           56                                    1                          1

58                           50                                   8                          64

58                              56                                 2                          4

61                              58                                  3                           9

61                             64                                 -3                            9

63                            57                                  6                          36

64                           61                                   3                           9

<u> 65                          54                                  11                          121        </u>

<u>∑                                                                   -7                          887      </u>

The degrees of freedom = n-1= 20-1= 19

The significance level is 0.05

The test statistic is

t= d`/sd/√n

The critical region is ║t║≥ t (0.025,19) = 2.093

The null and alternate hypotheses is

H0 : ud= 0.5 against Ha: ud≠ 0.5 (two tailed test)

d`= ∑di/n= -7/20= 0.35

Sd²= ∑(di-d`)²/n-1 = 1/n-1 [∑di²- (∑di)²n]

= 1/19[ 887-(0.35)²/20] = [887-0.1225/19]= 46.67

Sd= 6.83

Therefore

t= d`/ sd/√n

t=  0.35/ 6.83/√20

t= 0.05124/ 4.472=0.01145

Since the calculated value of t = 0.01145 does not fall in the critical region ║t║≥ t (0.025,19) = 2.093 so we accept H0 the data suggests that after training people can correctly predict coin toss outcomes better than the 50 percent expected by chance guessing alone.

<u />

5 0
3 years ago
What is the measure of angle CED?
vredina [299]

Answer:

no idea but hi Hannah

Step-by-step explanation:

8 0
3 years ago
Please help me fast and show all your work please thx ​
Nesterboy [21]

Answer:

area = 50 cm²

Step-by-step explanation:

The area (A) of a trapezoid is calculated as

A = \frac{1}{2} h (a + b)

where h is the perpendicular height and a, b the parallel bases

Here h = 4, a = 15 and b = 10, thus

A = \frac{1}{2} × 4 × (15 + 10) = 2 × 25 = 50 cm²

8 0
4 years ago
Other questions:
  • Please help ASAP! Taking my Algebra 1 Mid-Term right now!!!
    7·2 answers
  • What is the unit rate of 72people/3 buses?
    7·1 answer
  • Really stuck on this question
    8·1 answer
  • $4.30 40% discount 6% tax
    13·2 answers
  • Izzy runs on the schools track team. She runs 4 3/5 miles in 2/3 hour. What is Izzy's speed in miles per hour?
    8·1 answer
  • PLEASE HELP I NEED HELP
    15·1 answer
  • (If gets it right get's brainliest)If the hypotenuse of an isosceles right triangle is 14, what is the area of the triangle?
    6·1 answer
  • What’s the correct answer for this?
    7·1 answer
  • mr johnson is grading english essays hes determined that he must grade 124 essays and that he can grade 8 per day how many days
    6·1 answer
  • X + 9 &lt;4x plz awser​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!