The correct answer is B)9
The distributive law is satisfied if the numbers 1,2, and 3 are used as multyplying factors.
<h3>What is the distributive law?</h3>
This is basic mathematical law that states:
- A multiplied by (b+c) equals (a x b) + (a x c)
<h3>Is this law satisfied if there are three numbers involved?</h3>
The law is always satisfied if one of the numbers is 1. Here is an example
or
- (2x1) + (2x2) + (2x3)
- 2+4+6 = 12
Learn more about mathematical laws in: brainly.com/question/15190681
#SPJ1
Answer:
7
Step-by-step explanation:
Substitution then simplify
The common difference based on the sequence given is 15.
<h3>How to illustrate the sequence?</h3>
It should be noted that the sequence given Isa arithmetic sequence.
The common difference will be the second term minus the first term. This will be:
= 101 - 86
= 15
In conclusion, the difference is 15.
Learn more about sequence on:
brainly.com/question/6561461
#SPJ1
Answer:
<u>a) x = 3</u>
<u>b) z = 10</u>
<u>c) p = 2</u>
<u>d) x = 7</u>
<u>e) u = 1</u>
Step-by-step explanation:
a) 2x = 6
Despejamos x dividiendo por 2 a amabos lados de la eacuacion.
(2/2)x = 6/2
<u>x = 3</u>
Si remplazamos x en la ecuación original:
2(3)=6
6 = 6
Queda demostrado.
b) 10 + z = 20
Despejamos z restando 10 en amabos lados de la eacuacion.
10-10+z = 20-10
<u>z = 10</u>
Si remplazamos z en la ecuación original:
10 + 10=20
20 = 20
Queda demostrado.
c) p + 9 = 11
Despejamos p restando 9 en amabos lados de la eacuacion.
p + 9 - 9 = 11-9
<u>p = 2</u>
Si remplazamos p en la ecuación original:
2 + 9 = 11
11 = 11
Queda demostrado.
d) 3x + 8 = 29
Despejamos x restando 8 en amabos lados de la eacuacion y luego divideindo por 3 en ambos lados de la ecuación.
3x+8-8 = 29-8
3x = 21
(3/3)x = 21/3
<u>x = 7</u>
Si remplazamos x en la ecuación original:
3(7) + 8 = 29
21 + 8 = 29
29 = 29
Queda demostrado
e) 2u + 8 = 10
Despejamos u restando 8 en amabos lados de la eacuacion y luego divideindo por 2 en ambos lados de la ecuación.
2u+8-8 = 10-8
2x = 2
(2/2)x = 2/2
<u>x = 1</u>
Si remplazamos x en la ecuación original:
2(1) + 8 = 10
2 + 8 = 10
10 = 10
Queda demostrado
Espero te haya sido de ayuda!