Answer:
x=1
Step-by-step explanation:
1. Complete the square on the right side of the equation.
5
(
x
−
1
)2
−
18
2. Use the vertex form, y
=
a
(
x
−
h
)
2
+
k
, to determine the values of a
, h
, and k
.
a=
5
h
=
1
k
=
−
18
3. Since the value of a is positive, the parabola opens up.
Opens Up
4. Find the vertex (
h
,
k
)
.
(
1
,
−
18
)
5. Find p
, the distance from the vertex to the focus.
1
/20
6. Find the focus.
7. (
1
,
−
359/
20
)
8. Find the axis of symmetry by finding the line that passes through the vertex and the focus.
ANSWER: x
=
1
Separate the vectors into their <em>x</em>- and <em>y</em>-components. Let <em>u</em> be the vector on the right and <em>v</em> the vector on the left, so that
<em>u</em> = 4 cos(45°) <em>x</em> + 4 sin(45°) <em>y</em>
<em>v</em> = 2 cos(135°) <em>x</em> + 2 sin(135°) <em>y</em>
where <em>x</em> and <em>y</em> denote the unit vectors in the <em>x</em> and <em>y</em> directions.
Then the sum is
<em>u</em> + <em>v</em> = (4 cos(45°) + 2 cos(135°)) <em>x</em> + (4 sin(45°) + 2 sin(135°)) <em>y</em>
and its magnitude is
||<em>u</em> + <em>v</em>|| = √((4 cos(45°) + 2 cos(135°))² + (4 sin(45°) + 2 sin(135°))²)
… = √(16 cos²(45°) + 16 cos(45°) cos(135°) + 4 cos²(135°) + 16 sin²(45°) + 16 sin(45°) sin(135°) + 4 sin²(135°))
… = √(16 (cos²(45°) + sin²(45°)) + 16 (cos(45°) cos(135°) + sin(45°) sin(135°)) + 4 (cos²(135°) + sin²(135°)))
… = √(16 + 16 cos(135° - 45°) + 4)
… = √(20 + 16 cos(90°))
… = √20 = 2√5
This is the answer i cant type it so i just snipped it good luck!!!:)
Answer:
Step-by-step explanation:
BD - 5 = Y
BD = Y + 5
B = (Y + 5)/D