1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
brilliants [131]
3 years ago
9

A clothing store determines that in order to sell x shirts, the price per shirt should be p(x)=100−x dollars. Getting x shirts f

rom the supplier costs the store C(x)=1,600+20x dollars. If the store’s revenue from selling x shirts is R(x)=x⋅p(x), for what value of x will the store’s cost and revenue be equal?
Mathematics
1 answer:
vredina [299]3 years ago
5 0

Answer:

x= -40

Step-by-step explanation:

Cost

C(x)=1,600+20x

P(x)=100-x

Revenue=x*p(x)

=x*(100-x)

=100x-x^2

Cost=Revenue

1600+20x=100x-x^2

1600+20x-100x+x^2=0

1600-80x+x^2=0

Solve using quadratic formula

Formula where

a = 1, b = 80, and c = 1600

x=−b±√b2−4ac/2a

x=−80±√80^2−4(1)(1600) / 2(1)

x=−80±√6400−6400 / 2

x=−80±√0 / 2

The discriminant b^2−4ac=0

so, there is one real root.

x= −80/2

x= -40

You might be interested in
The heights, in inches, of several seventh-grade students at Evan Mills Middle School are listed below.
Naily [24]
What are you looking for ? 
7 0
3 years ago
PLS HELPPPP MEEEE I NEED WORK SHOWN TOO
Elanso [62]

The series of operations for each case are listed below:

  1. GCF / GCF / GCF
  2. GCF / Grouping
  3. Quadratic trinomial
  4. GCF / Quadratic trinomial
  5. Difference of squares
  6. Difference of cubes / Quadratic trinomial
  7. Sum of cubes
  8. GCF / Quadratic trinomial
  9. GCF / Difference of squares

<h3>How to applying factor properties to simplify algebraic expressions</h3>

In algebra, factor properties are commonly used to solve certain forms of polynomials in a quick and efficient way and whose effectiveness is sustained on all definitions and theorems known in real algebra. In this problem, we should explain and show what factor properties are used in each case:

Case 1

5 · x · y³ + 10 · x² · y                                             Given

5 · (x · y³ + 2 · x² · y)                                            GCF

5 · x · (y³ + 2 · x · y)                                              GCF

5 · x · y · (y² + 2 · x)                                              GCF

Case 2

6 · z · x + 9 · x + 14 · z + 21                                   Given

3 · x · (z + 3) + 7 · (z + 3)                                       GCF

(3 · x + 7) · (z + 3)                                                  Grouping

Case 3

a² + 2 · a - 63                                                       Given

(a + 9) · (a - 7)                                                       Quadratic trinomial

Case 4

6 · z² + 5 · z - 4                                                     Given

6 · [z² + (5 / 6) · z - 2 / 3]                                      GCF

6 · (z - 1 / 2) · (z + 4 / 3)                                         Quadratic trinomial

Case 5

81 · m² - 25                                                           Given

(9 · m + 5) · (9 · m - 5)                                           Difference of squares

Case 6

8 · x³ - 27                                                               Given

(2 · x - 3) · (4 · x² + 6 · x + 9)                                  Difference of cubes

4 · (2 · x - 3) · [x² + (3 / 2) · x + 9 / 4]                      Quadratic trinomial

Case 7

27 · b³ + 64 · z³                                                      Given

(3 · b + 4 · z) · (9 · b² - 12 · b · z + 16 · z²)               Sum of cubes

Case 8

2 · w³ - 28 · w² + 80 · w                                         Given

2 · w · (w² - 14 · w + 40)                                          GCF

2 · w · (w - 4) · (w - 10)                                             Quadratic trinomial

Case 9

200 · a⁴ - 18 · b⁶                                                     Given

2 · (100 · a⁴ - 9 · b⁶)                                                GCF

2 · (10 · a² + 3 · b³) · (10 · a² - 3 · b³)                       Difference of squares

To learn more on polynomials: brainly.com/question/17822016

#SPJ1

7 0
1 year ago
Lula made 24 hops in 30 seconds how much would she make in 50 seconds
stepan [7]
The answer is 5 hoped that helped  and good luck (:
3 0
2 years ago
Read 2 more answers
Triangles and angles<br> Pls help
AleksandrR [38]

Answer:

The two bottom angles of this triangle are both represented by the same variable, in this case, an x. This means, that both of the bottom angles are equal to each other.

So we have:

32 + x + x = 180 (since the TOTAL angles of a triangle adds up to 180)

32 + 2x = 180 (combine the 2 x's together)

2x = 148 (subtract a 32 from both sides)

x = 74

Let me know if this helps!

4 0
3 years ago
Parameter or statistic??
Mandarinka [93]
The answer is b hope this helps
6 0
3 years ago
Other questions:
  • Help on my geometry plzzzz
    12·1 answer
  • A recipe takes 90 min to make. 25% of the time is spent preparing the ingredients. How many minutes are spent preparing?
    5·1 answer
  • What is the sum of 7/10 and 6/100
    11·1 answer
  • J is 14 less than 22 solve for j
    8·1 answer
  • Find the absolute value of -14.
    15·2 answers
  • On a map of Texas, the
    12·1 answer
  • Which of the following has a graph that is a fraught line? Equation 1: y = 2x + 7
    15·1 answer
  • Bicycles have 2 wheels an tricycles have 3. There are a total of 7 bicycles and tricycle. If there are 17 wheels in all how many
    7·1 answer
  • I need help please!!
    11·2 answers
  • Point D has the same x-coordinate as the y-coordinate as B same same y-coordinate as the x-coordinate of point A.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!