The formula of a volume of a sphere:

R - radius
We have the volume = 288 in³. Substitute:
![\dfrac{4}{3}\pi R^3=288\qquad\text{multiply both sides by 3}\\\\4\pi R^3=864\qquad\text{divide both sides by}\ 4\pi\\\\R^3=\dfrac{216}{\pi}\to R=\sqrt[3]{\dfrac{216}{\pi}}\\\\R=\dfrac{\sqrt[3]{216}}{\sqrt[3]{\pi}}\\\\R=\dfrac{6}{\sqrt[3]{\pi}}\ in](https://tex.z-dn.net/?f=%5Cdfrac%7B4%7D%7B3%7D%5Cpi%20R%5E3%3D288%5Cqquad%5Ctext%7Bmultiply%20both%20sides%20by%203%7D%5C%5C%5C%5C4%5Cpi%20R%5E3%3D864%5Cqquad%5Ctext%7Bdivide%20both%20sides%20by%7D%5C%204%5Cpi%5C%5C%5C%5CR%5E3%3D%5Cdfrac%7B216%7D%7B%5Cpi%7D%5Cto%20R%3D%5Csqrt%5B3%5D%7B%5Cdfrac%7B216%7D%7B%5Cpi%7D%7D%5C%5C%5C%5CR%3D%5Cdfrac%7B%5Csqrt%5B3%5D%7B216%7D%7D%7B%5Csqrt%5B3%5D%7B%5Cpi%7D%7D%5C%5C%5C%5CR%3D%5Cdfrac%7B6%7D%7B%5Csqrt%5B3%5D%7B%5Cpi%7D%7D%5C%20in)
The formula of a surface area of a sphere:

Substitute:
![S.A.=4\pi\left(\dfrac{6}{\sqrt[3]{\pi}}\right)^2=4\pi\cdot\dfrac{6^2}{\sqrt[3]{\pi^2}}=\dfrac{4\pi\cdot36}{\sqrt[3]{\pi^2}}=\dfrac{144\pi}{\sqrt[3]{\pi^2}}\\\\S.A.=\dfrac{144\pi}{\sqrt[3]{\pi^2}}\cdot\dfrac{\sqrt[3]{\pi}}{\sqrt[3]{\pi}}=\dfrac{144\pi\sqrt[3]{\pi}}{\sqrt[3]{\pi^3}}=\dfrac{144\pi\sqrt[3]{\pi}}{\pi}=\boxed{144\sqrt[3]{\pi}\ in^2}](https://tex.z-dn.net/?f=S.A.%3D4%5Cpi%5Cleft%28%5Cdfrac%7B6%7D%7B%5Csqrt%5B3%5D%7B%5Cpi%7D%7D%5Cright%29%5E2%3D4%5Cpi%5Ccdot%5Cdfrac%7B6%5E2%7D%7B%5Csqrt%5B3%5D%7B%5Cpi%5E2%7D%7D%3D%5Cdfrac%7B4%5Cpi%5Ccdot36%7D%7B%5Csqrt%5B3%5D%7B%5Cpi%5E2%7D%7D%3D%5Cdfrac%7B144%5Cpi%7D%7B%5Csqrt%5B3%5D%7B%5Cpi%5E2%7D%7D%5C%5C%5C%5CS.A.%3D%5Cdfrac%7B144%5Cpi%7D%7B%5Csqrt%5B3%5D%7B%5Cpi%5E2%7D%7D%5Ccdot%5Cdfrac%7B%5Csqrt%5B3%5D%7B%5Cpi%7D%7D%7B%5Csqrt%5B3%5D%7B%5Cpi%7D%7D%3D%5Cdfrac%7B144%5Cpi%5Csqrt%5B3%5D%7B%5Cpi%7D%7D%7B%5Csqrt%5B3%5D%7B%5Cpi%5E3%7D%7D%3D%5Cdfrac%7B144%5Cpi%5Csqrt%5B3%5D%7B%5Cpi%7D%7D%7B%5Cpi%7D%3D%5Cboxed%7B144%5Csqrt%5B3%5D%7B%5Cpi%7D%5C%20in%5E2%7D)
Answer:
DISTANCE
6,370,000.00m
SCALE
1 pixel : 2500m
depth: about 1,800 to 3,200 miles (2,897 to 5,150 km)
Answer:
The coordinate r is the length of the line segment from the point (x,y) to the origin and the coordinate θ is the angle between the line segment and the positive x-axis.
Step-by-step explanation:
=>
<span>use formula^: a²-b²= (a-b)(a+b)
x²-1=0</span>
x²-1²=0
(x-1)(x+1)=0
x-1=0⇒ x₁=-1
x+1=0 ⇒x₂=1
Answer: x=+-1