The residuals are the numbers shown next to each black line. Just total them:
15 + 10 + 11-10 +9 +10 +3-17-12 = 19.
The answer is B. 19
Step-by-step explanation:
so we're making two draws *with* replacement (this is important)
step 1: for the first draw, it wants the probability of getting a sour candy. to calculate this:
(# of sour candy) / (total # of candy)
step 2: for the second draw, it wants the probability of *not* getting a sour candy. to calculate this, you can calculate 1 - (the probability form part 1).
step 3: to find the probability of both events happening together, simply multiply the probabilities from part 1 and 2 together
side note: for step 2, you can only do this because the candy is being replaced. if there were no replacement, you'd have to re-calculate (# of non-sour candies) / (total after the first candy is drawn)
Complete Question
The Brown's Ferry incident of 1975 focused national attention on the ever-present danger of fires breaking out in nuclear power plants. The Nuclear Regulatory Commission has estimated that with present technology there will be on average, one fire for every 10 years for a reactor. Suppose that a certain state has two reactors on line in 2020 and they behave independently of one another. Assuming the incident of fires for individual reactors can be described by a Poisson distribution, what is the probability that by 2030 at least two fires will have occurred at these reactors?
Answer:
The value is 
Step-by-step explanation:
From the question we are told that
The rate at which fire breaks out every 10 years is
Generally the probability distribution function for Poisson distribution is mathematically represented as

Here x represent the number of state which is 2 i.e 
Generally the probability that by 2030 at least two fires will have occurred at these reactors is mathematically represented as

=> ![P(x_1 + x_2 \ge 2 ) = 1 - [P(x_1 + x_2 = 0 ) + P( x_1 + x_2 = 1 )]](https://tex.z-dn.net/?f=P%28x_1%20%2B%20x_2%20%5Cge%202%20%29%20%3D%20%201%20-%20%5BP%28x_1%20%2B%20x_2%20%3D%200%20%29%20%2B%20P%28%20x_1%20%2B%20x_2%20%3D%201%20%29%5D)
=> ![P(x_1 + x_2 \ge 2 ) = 1 - [ P(x_1 = 0 , x_2 = 0 ) + P( x_1 = 0 , x_2 = 1 ) + P(x_1 , x_2 = 0)]](https://tex.z-dn.net/?f=P%28x_1%20%2B%20x_2%20%5Cge%202%20%29%20%3D%20%201%20-%20%5B%20P%28x_1%20%20%3D%200%20%2C%20%20x_2%20%3D%200%20%29%20%2B%20P%28%20x_1%20%3D%200%20%2C%20x_2%20%3D%201%20%29%20%2B%20P%28x_1%20%2C%20x_2%20%3D%200%29%5D)
=> 
=> ![P(x_1 + x_2 \ge 2 ) = 1 - \{ [ \frac{1^0}{ 0! } * e^{-1}] * [[ \frac{1^0}{ 0! } * e^{-1}]] )+ ( [ \frac{1^1}{1! } * e^{-1}] * [[ \frac{1^1}{ 1! } * e^{-1}]] ) + ( [ \frac{1^1}{ 1! } * e^{-1}] * [[ \frac{1^0}{ 0! } * e^{-1}]]) \}](https://tex.z-dn.net/?f=P%28x_1%20%2B%20x_2%20%5Cge%202%20%29%20%3D%20%201%20-%20%5C%7B%20%5B%20%5Cfrac%7B1%5E0%7D%7B%200%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%20%2A%20%5B%5B%20%5Cfrac%7B1%5E0%7D%7B%200%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%5D%20%29%2B%20%28%20%5B%20%5Cfrac%7B1%5E1%7D%7B1%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%20%2A%20%5B%5B%20%5Cfrac%7B1%5E1%7D%7B%201%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%5D%20%29%20%2B%20%28%20%5B%20%5Cfrac%7B1%5E1%7D%7B%201%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%20%2A%20%5B%5B%20%5Cfrac%7B1%5E0%7D%7B%200%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%5D%29%20%5C%7D)
=> ![P(x_1 + x_2 \ge 2 )= 1- [[0.3678 * 0.3679] + [0.3678 * 0.3679] + [0.3678 * 0.3679] ]](https://tex.z-dn.net/?f=P%28x_1%20%2B%20x_2%20%5Cge%202%20%29%3D%201-%20%5B%5B0.3678%20%20%2A%200.3679%5D%20%2B%20%5B0.3678%20%20%2A%200.3679%5D%20%2B%20%5B0.3678%20%20%2A%200.3679%5D%20%20%5D)

Answer:
the theorum used here is sas one
I don't really understand your question , can you rephrase it ?
Do you mean ?5x7 = 455 ?
because then it would be :
455 divided by 7 which equals 65 :)