1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ioda
3 years ago
10

A triangle has sides that measure 2 units, 5 units, and 5.39 units. What is the area?

Mathematics
1 answer:
mr_godi [17]3 years ago
4 0

Answer:

53.9

Step-by-step explanation:

To find area you have to multiply all the numbers...

<h2>b Base </h2><h2></h2><h2>hb Height</h2>
You might be interested in
Can anybody help plzz?? 65 points
Yakvenalex [24]

Answer:

\frac{dy}{dx} =\frac{-8}{x^2} +2

\frac{d^2y}{dx^2} =\frac{16}{x^3}

Stationary Points: See below.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Equality Properties

<u>Calculus</u>

Derivative Notation dy/dx

Derivative of a Constant equals 0.

Stationary Points are where the derivative is equal to 0.

  • 1st Derivative Test - Tells us if the function f(x) has relative max or mins. Critical Numbers occur when f'(x) = 0 or f'(x) = undef
  • 2nd Derivative Test - Tells us the function f(x)'s concavity behavior. Possible Points of Inflection/Points of Inflection occur when f"(x) = 0 or f"(x) = undef

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{8}{x} +2x

<u>Step 2: Find 1st Derivative (dy/dx)</u>

  1. Quotient Rule [Basic Power]:                    f'(x)=\frac{0(x)-1(8)}{x^2} +2x
  2. Simplify:                                                      f'(x)=\frac{-8}{x^2} +2x
  3. Basic Power Rule:                                     f'(x)=\frac{-8}{x^2} +1 \cdot 2x^{1-1}
  4. Simplify:                                                     f'(x)=\frac{-8}{x^2} +2

<u>Step 3: 1st Derivative Test</u>

  1. Set 1st Derivative equal to 0:                    0=\frac{-8}{x^2} +2
  2. Subtract 2 on both sides:                         -2=\frac{-8}{x^2}
  3. Multiply x² on both sides:                         -2x^2=-8
  4. Divide -2 on both sides:                           x^2=4
  5. Square root both sides:                            x= \pm 2

Our Critical Points (stationary points for rel max/min) are -2 and 2.

<u>Step 4: Find 2nd Derivative (d²y/dx²)</u>

  1. Define:                                                      f'(x)=\frac{-8}{x^2} +2
  2. Quotient Rule [Basic Power]:                  f''(x)=\frac{0(x^2)-2x(-8)}{(x^2)^2} +2
  3. Simplify:                                                    f''(x)=\frac{16}{x^3} +2
  4. Basic Power Rule:                                    f''(x)=\frac{16}{x^3}

<u>Step 5: 2nd Derivative Test</u>

  1. Set 2nd Derivative equal to 0:                    0=\frac{16}{x^3}
  2. Solve for <em>x</em>:                                                    x = 0

Our Possible Point of Inflection (stationary points for concavity) is 0.

<u>Step 6: Find coordinates</u>

<em>Plug in the C.N and P.P.I into f(x) to find coordinate points.</em>

x = -2

  1. Substitute:                    f(-2)=\frac{8}{-2} +2(-2)
  2. Divide/Multiply:            f(-2)=-4-4
  3. Subtract:                       f(-2)=-8

x = 2

  1. Substitute:                    f(2)=\frac{8}{2} +2(2)
  2. Divide/Multiply:            f(2)=4 +4
  3. Add:                              f(2)=8

x = 0

  1. Substitute:                    f(0)=\frac{8}{0} +2(0)
  2. Evaluate:                      f(0)=\text{unde} \text{fined}

<u>Step 7: Identify Behavior</u>

<em>See Attachment.</em>

Point (-2, -8) is a relative max because f'(x) changes signs from + to -.

Point (2, 8) is a relative min because f'(x) changes signs from - to +.

When x = 0, there is a concavity change because f"(x) changes signs from - to +.

3 0
3 years ago
Amy is planning the seating arrangement for her wedding reception. Each round table can sit 12 guests. The head table can sit th
storchak [24]

Answer:

23 tables.

Step-by-step explanation:

282- 8 = 274     274 divided by 12 = 22.8  round to the nearest whole number which is 23.

7 0
3 years ago
Pleaseeee helppp meee!!!!
AleksandrR [38]
7=3(5+x). 7 represents the pay altogether. 3 represents the total number of people. 5 represents the price of a ticket +x which represents the coupon
7 0
2 years ago
The formula for the circumference of a circle is C=2nr, r is the radius and c is the circumference. The equation solved for r=c/
Fynjy0 [20]

Answer:

r = 8

Step-by-step explanation:

The circumference of a circle is given by

C = 2 * pi *r

16 pi = 2 * pi r

Divide each side by 2 pi

16 pi /2 pi  = 2 pi r / 2 pi

8 = r

8 0
3 years ago
Read 2 more answers
What Is the area of the trlangle? Enter the answer in the box.<br> square units
WITCHER [35]

Answer: right

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Other questions:
  • i don't know how to solve this problem i think i can dl the firts part but the 2nd one i don't know what x means the question sa
    15·1 answer
  • Ok so i need help,what is 5% of 225
    8·2 answers
  • 2 At Bea's Pet Shop, the number of dogs, d, is initially five less than twice the number of cats, c. If she decides to add three
    8·1 answer
  • The two triangles are similar below. Find the value of x in the following: (NOT DRAWN TO SCALE)​
    8·1 answer
  • The expression 1 ÷ 1/4 is given. Give a Real life application to expression and Then simplify it. help mark you as brainliest 30
    8·1 answer
  • Predict how many times you will roll a number less than 5 if you roll a standard number cube 200 times. Round to the nearest int
    5·1 answer
  • -5b = -20 b= need help with homwork
    15·2 answers
  • Please help me someone
    7·1 answer
  • PLEASE HELP QUICK!!!!!!!! WILL GIVE BRAINIEST!!!!!!!!!
    13·1 answer
  • A store manager predicts that 100 hats will be sold if each hat costs $12. The manager predicts that 4 less hats will be sond fo
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!