Answer:
- domain (-∞, ∞)
- range (-∞, 4]
- increasing (-∞, 0)
- decreasing (0, ∞)
- constant (only at x=0, not on any interval)
Step-by-step explanation:
The graph is of the equation y = -x^2 +4. It is a polynomial of even degree, so has a domain of all real numbers: (-∞, ∞).
The vertical extent of the graph includes y=4 and all numbers less than that:
   range: (-∞, 4]
The graph is increasing to the left of its vertex at x=0, decreasing to the right.
   increasing (-∞, 0); decreasing (0, ∞)
There is no interval on which the function is constant. It has a horizontal tangent at x=0, but a single point does not constitute an interval.
 
        
             
        
        
        
Answer: (12) ∠1 = 20° (13) ∠2 = 50° (14) ∠3 = 15° (15) UV = 80° (16) AB = 40°  (17) ABC <em>or</em>  180° - CD (18) BC - 140°  (19) ABC = 150°
<u>Step-by-step explanation:</u>
12)  (UV - ST) = ∠1
(UV - ST) = ∠1
 (80 - 40) = ∠1
(80 - 40) = ∠1
 (40) = ∠1
(40) = ∠1
20 = ∠1
13)  (UV + ST) = ∠2
(UV + ST) = ∠2
 (70 + 30) = ∠2
(70 + 30) = ∠2
 (100) = ∠2
(100) = ∠2
50 = ∠2
14)  (VB - BS) = ∠3
(VB - BS) = ∠3
 (60 - 30) = ∠3
(60 - 30) = ∠3
 (30) = ∠3
(30) = ∠3
15 = ∠3
15)  (UV - ST) = ∠1
(UV - ST) = ∠1
 (UV - 20) = 30
(UV - 20) = 30
UV - 20 = 60
UV = 80
16) ∠1 = arc AB
      ∠1 = 40
               arc AB = 40 
17) arc AB + arc BC = arc AC
                                 = 180 = arc CD  
18) ∠1 + ∠2 + ∠3 = 180
    20 + ∠2  + 20 = 180
             ∠2 + 40 = 180
                       ∠2  = 140
19) ∠1 + ∠ 2 = arc ABC
      ∠1 + ∠2 + ∠3 = 180
     arc ABC + 30 = 180
             arc ABC = 150
 
        
             
        
        
        
Angle mes BCD = (mes Arc AE-mes ARC BD)/2
Plug: mes BCD = (64+20)/2 = 44° (Number C)
        
             
        
        
        
Answer:  360,000
Reason:
Think of 360 as 360.0
We move the decimal point 3 spots to the right to get to 360,000.0 or simply 360,000; this movement of 3 to the right is directly because of the exponent over the 10. 
The 10^3 represents "thousand", so "360 x 10^3" is "360 thousand" = 360,000.