Answer:
dv = surface area * dh
so
dv/dt = surface area * dh/dt
width at surface = 40 + (80-40)(30/40)
= 40 + 30 = 70 cm = 0.70 m
so
surface area = 9 * .7 = 6.3 m^2
so
.3 m^3/min = 6.3 m^2 * dh/dt
and
dh/dt = .047 meters/min or 4.7 cm/min
Step-by-step explanation:
Y = 3
Exp:
10 + 12y = 2y + 40
- 2y = - 2y
10 + 10y = 40
-10 -10
10y = 30
/ 10 / 10
y = 3
Most textbooks interpret standard form of a quadratic function to be as follows:
f(x) =

In the function f(x) =

, notice we do not have a value for "c". Just place a "0" in for the c and you have standard form.
the criteria for standard form:
1. All like terms are combined
2. Degree must drop from left to right
3. The leading coefficient cannot be equal to zero.
You divide 42 by 7 which equals 6
Answer:
The integrals was calculated.
Step-by-step explanation:
We calculate integrals, and we get:
1) ∫ x^4 ln(x) dx=\frac{x^5 · ln(x)}{5} - \frac{x^5}{25}
2) ∫ arcsin(y) dy= y arcsin(y)+\sqrt{1-y²}
3) ∫ e^{-θ} cos(3θ) dθ = \frac{e^{-θ} ( 3sin(3θ)-cos(3θ) )}{10}
4) \int\limits^1_0 {x^3 · \sqrt{4+x^2} } \, dx = \frac{x²(x²+4)^{3/2}}{5} - \frac{8(x²+4)^{3/2}}{15} = \frac{64}{15} - \frac{5^{3/2}}{3}
5) \int\limits^{π/8}_0 {cos^4 (2x) } \, dx =\frac{sin(8x} + 8sin(4x)+24x}{6}=
=\frac{3π+8}{64}
6) ∫ sin^3 (x) dx = \frac{cos^3 (x)}{3} - cos x
7) ∫ sec^4 (x) tan^3 (x) dx = \frac{tan^6(x)}{6} + \frac{tan^4(x)}{4}
8) ∫ tan^5 (x) sec(x) dx = \frac{sec^5 (x)}{5} -\frac{2sec^3 (x)}{3}+ sec x