Answer:
Often, the simplest way to solve "ax2 + bx + c = 0" for the value of x is to factor the quadratic, set each factor equal to zero, and then solve each factor. But sometimes the quadratic is too messy, or it doesn't factor at all, or you just don't feel like factoring. While factoring may not always be successful, the Quadratic Formula can always find the solution.
The Quadratic Formula uses the "a", "b", and "c" from "ax2 + bx + c", where "a", "b", and "c" are just numbers; they are the "numerical coefficients" of the quadratic equation they've given you to solve.
Answer:
What number is represented by point B = -1
Which point represents the number 2? = C
Yes because if you turn 6 and three to 12 then you have 2/12 and 4/12!
Find the possible rational roots and use synthetic division to find the first zero.
I chose x=1 (which represents the factor "x-1")
1║2 -7 -13 63 -45
║ 2 -5 -18 45
2 -5 -18 45 0
(x-1) is a factor, (2x³ - 5x² - 18x + 45) is the other factor.
Use synthetic division on the decomposed polynomial to find the next zero.
I chose x = 3 (which represents the factor "x-3")
3║2 -5 -18 45
║ 6 3 -45
2 1 -15 0
Using synthetic division, we discovered that (x-1), (x-3), & (2x² + x -15) are factors. Take the new decomposed polynomial (2x² + x -15) and find the last two factors using any method.
Final Answer: (x-1)(x-3)(x+3)(2x-5)