A garden measuring 12 meters by 6 meters is going to have a walkway constructed all around the perimeter, increasing the total a
rea to 160 square meters. What will be the width of the pathway? (The pathway will be the same width around the entire garden).
2 answers:
Answer:
x=2
Step-by-step explanation:
Original width = 6
New width 6+x+x
Orignal length 12
New length 12+x+x
A = l*w
160 = ( 6+2x) ( 12+2x)
Factor
160 = 2( 3+x) 2(6+x)
Divide each side by 4
40 = (3+x) (6+x)
FOIL
40 = 18+ 6x+3x+ x^2
40 = 18 +9x+x^2
Subtract 40 from each side
0 = x^2 +9x -22
Factor
0 = (x +11) (x-2)
Using the zero product property
x +11 =0 x-2 =0
x= -11 x=2
Since we cannot have a negative sidewalk
x =2
Answer:
2
Step-by-step explanation:
Original width = 6
New width = 6 + x + x = 6 + 2x
Orignal length = 12
New length = 12 + x + x = 12 + 2x
A = l * w
160 = (6 + 2x)(12 + 2x)
160 = 2(3+x) * 2(6+x)
160 = 4 * (3 + x)(6 + x)
160/4 = (3 + x)(6 + x)
40 = 18 + 6x + 3x + x^2
40 = 18 + 9x + x^2
x^2 + 9x - 22 = 0
= x^2 + 11x - 2x - 22 = 0
= x(x + 11) - 2(x + 11) = 0
= (x + 11) (x - 2) = 0
x = - 11, 2
Since we cannot have a negative width because it's a dimension,
x = 2 is right
You might be interested in
Answer:
17.25
Step-by-step explanation:
All have 4 sides. That’s what I would put. Good luck and don’t copy links they’re most likely viruses
Answer:
n-7>-4
n-7+7>-4+7
n>-4+7
n>3
Answer:
the last choice
Step-by-step explanation: