The solution to the first expression - 7+3(9-4)^2÷5 is given as 22.
To get the answer correctly, one must follow rudimentary rules of operations which are coined into the acronym BODMAS.
<h3>What is BODMAS?</h3>
This is the order in which mathematical operations must be executed.
B = Bracket
O = Orders (that is Powers, Indices or roots)
D= Division
M = Multiplication
A = Addition
S = Subtraction
Now lets see how we got 22 from the first set of operations:
<h3>Operation 1 (Example)</h3>
7+3(9-4)^2÷5 =
7+3 (5)^2÷5=
7+3 * 25÷5 =
7+3*5=
7+15=
22
Following the BODMAS rule and the example in Operation 1 above, we can state the remaining answers as follows:
<h3>
Operation 2</h3>
12/3-4+7^2 = 49
<h3 /><h3>
Operation 3</h3>
(7-3)×3^3÷9 = 12
<h3>Operation 4</h3>
5(7-3)^2÷(6-4)^3-9 = 1
<h3>Operation 5</h3>
3×(7-5)^3÷(8÷4)^2-5 = 1
<h3>Operation 6</h3>
9+(3×10)/5×2-12 = 9
See the link below for more about Mathematical Operations:
brainly.com/question/14133018
Answer:
it is b
Step-by-step explanation:
It is equal when you round it off.
Step-by-step explanation:
Given - f(t)=110(1.35)^{\frac{t}{40}}
To find - Write the function in the form f(t)=ae^{kt}. Round all coefficients
to four decimal places.
Proof -
Given that , the function is f(t)=110(1.35)^{\frac{t}{40}}
Now,
We can write it in the form of 
By comparing with the form
, we get
a = 110.0000
k =
= 0.0250