Acids give food a bitter taste due to the presence of hydroxonium ion and when it is dissolved in water to form an acidic solution, it most times can conduct electricity i.e tetraoxosulfate solution
Answer:
C.) The less dense the object, the faster the heat will transfer.
Answer:

Explanation:
Hello!
In this case, we can divide the problem in two steps:
1. Dilution to 278 mL: here, the initial concentration and volume are 1.20 M and 52.0 mL respectively, and a final volume of 278 mL, it means that the moles remain the same so we can write:

So we solve for C2:

2. Now, since 111 mL of water is added, we compute the final volume, V3:

So, the final concentration of the 139 mL portion is:

Best regards!
<span>An independent variable is a variable that is not affected in the experiment. It is what experimenter controls. Here, the concentration of salt is the independent variable.
On the other side, a dependent variable is called dependent because it depends on the independent variables. It is what is affected and observed during the experiment. Here, the freezing point of water is affected and, thus, it is the dependent variable.
A controlled variable is a variable that must remain unchanged (must be constant) during the experiment so that the effect on the dependent variable depends only on the independent variable. Here, the volume of water must be constant, so it is the controlled variable.
</span>
Potassium dichromate reacts with sulfuric acid to form chromic acid, H₂CrO₄ which is a very strong oxidizing agent. The secondary alcohol, (<em>R</em>)-2-butanol will be oxidized in the presence of chromic acid, but it can only be as oxidized as far as the ketone, which is the product shown, 2-butanone.
Sodium borohydride is a reducing agent that will reduce a ketone or aldehyde to an alcohol. When sodium borohydride reacts with 2-butanone, it reduces it to 2-butanol. However, the alcohol is no longer chiral as it was in the beginning since the sodium borohydride can add a hydride to either face of the carbonyl, which results in a racemic mixture of alcohols. This explains why the product has the same refractive index and boiling point as (<em /><em>R</em>)-2-butanol, however, the product formed would no longer be optically active.