Answer:
The result is 2 > 1. Hence, the series diverges
Step-by-step explanation:
You have the following series:
(1)
You use the ratio test to determine if the series is convergent or divergent. The ratios test is given by:
(2)
Then, you replace the series (1) in (2):
![\lim_{n \to \infty} \frac{\frac{2^{n+1}}{(n+1)^2}}{\frac{2^n}{n^2}}= \lim_{n \to \infty} \frac{(2^n2)(n^2)}{2^n(n+1)^2}\\\\\lim_{n \to \infty} \frac{2n^2}{n^2+2n+1}= \lim_{n \to \infty} \frac{2n^2}{n^2[1+\frac{2}{n}+\frac{1}{n^2}]} \\\\\lim_{n \to \infty} \frac{2}{1+\frac{2}{n}+\frac{1}{n^2}}=\frac{2}{1+0+0}=2](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B%5Cfrac%7B2%5E%7Bn%2B1%7D%7D%7B%28n%2B1%29%5E2%7D%7D%7B%5Cfrac%7B2%5En%7D%7Bn%5E2%7D%7D%3D%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B%282%5En2%29%28n%5E2%29%7D%7B2%5En%28n%2B1%29%5E2%7D%5C%5C%5C%5C%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B2n%5E2%7D%7Bn%5E2%2B2n%2B1%7D%3D%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B2n%5E2%7D%7Bn%5E2%5B1%2B%5Cfrac%7B2%7D%7Bn%7D%2B%5Cfrac%7B1%7D%7Bn%5E2%7D%5D%7D%20%5C%5C%5C%5C%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B2%7D%7B1%2B%5Cfrac%7B2%7D%7Bn%7D%2B%5Cfrac%7B1%7D%7Bn%5E2%7D%7D%3D%5Cfrac%7B2%7D%7B1%2B0%2B0%7D%3D2)
In the ratio test you have that if the limit is greater than 1, the series diverges.
The result is 2 > 1. Hence, the series diverges.