Answer:
1. Main sequence stars have different masses. The common characteristic they have is their source of energy. They burn fuel in their core through the process of fusing hydrogen atoms into helium.
2. Supergiants are among the most massive and most luminous stars. Supergiant stars occupy the top region of the Hertzsprung–Russell diagram with absolute visual magnitudes between about −3 and −8. The temperature range of supergiant stars spans from about 3,400 K to over 20,000 K.
3. Supergiants develop when massive main-sequence stars run out of hydrogen in their cores.
4. a supernova occur When the pressure drops low enough in a massive star, gravity suddenly takes over and the star collapses in just seconds. This collapse produces the explosion.
5. when a star has reached the end of its life and explodes in a brilliant burst of light
Explanation:
Answer:
A
Explanation:
Mass is a raw measurement, weight is effected by gravity
<span>Molecular formulas tell you how many atoms of each element are in a compound, and empirical formulastell you the simplest or most reduced ratio of elements in a compound. ... Also, many compounds with different molecular formula have the same<span>empirical formula</span></span>
Explanation:
According to Boyle's law, pressure of a gas is inversely proportional to its volume at constant temperature and moles.
Mathematically, P = 
where, k = proportionality constant
Also, formula for initial pressure and volume is as follows.

or, 
=
= 30 atm L
Now, we will calculate the value of
as follows.

= 
= 30 atm L
Hence, as
this means that it signifies that gas obeys boyle's law.
For this problem, the solution is exhibiting some colligative properties since the solute in the solution interferes with some of the properties of the solvent. We use equation for the boiling point elevation for this problem. We do as follows:
<span>
ΔT(boiling point) = (Kb)mi
</span>ΔT(boiling point) = (0.512)(1.3/2.0)(2)
ΔT(boiling point) = 0.67 degrees Celsius
<span>
T(boiling point) = 100 + 0.67 = 100.67 degrees Celsius</span>