<span>54.8 g of MgI2 can be produced.
To solve this, you need to determine the molar mass of each reactant and the product. First, look up the atomic weights of iodine and magnesium
Atomic weight of Iodine = 126.90447
Atomic weight of Magnesium = 24.305
Molar mass of MgI2 = 24.305 + 2 * 126.90447 = 278.11394
Now determine how many moles of Iodine and Magnesium you have
moles of Iodine = 50.0 g / 126.90447 g/mol = 0.393997154 mole
moles of Magnesium = 5.15 / 24.305 g/mol = 0.211890557 mole
Since for every magnesium atom, you need 2 iodine atoms and since the number of moles of available iodine isn't at least 2 times the available moles of magnesium, iodine is the limiting reagent.
So figure out how many moles of magnesium will be consumed by the iodine
0.393997154 mole / 2 = 0.196998577 mole.
This means that you can make 0.196998577 moles of MgI2. Now simply multiply by the previously calculated molar mass of MgI2
0.196998577 mole * 278.11394 g/mole = 54.78805 g
Round the result to the correct number of significant figures.
54.78805 g = 54.8 g</span>
The grams of 22.9 % sugar solution that contain 68.5 g of sugar is 299.13 g of solution
<u><em>calculation</em></u>
22.9% means that there are 22.9 g of sugar in 100 g of solution.
what about 68.5 g of sugar
- <em>by cross multiplication</em>
=[(68.5 g sugar x 100 g solution) /22.9 g sugar] =299.13 g of solution
Nb; <em>g sugar cancel each other</em>
To answer your question, the answer is number 1. hope this help
Answer:
Order of increasing strength of intermolecular attraction:
>
>
> Ar
Explanation:
can form hydrogen bond as H atom is attached with electronegative atom O.
Rest three,
,
, Ar are non-polar molecules.
In non-polar molecules, van der Waal's intermolecular forces of attractions exist. Hydrogen bonding is stronger intermolecular attraction then van der Waal's intermolecular forces of attraction, hence,
has strongest intermolecular attractions.
Ar will have least intermolecular attraction, as it behaves almost as ideal gas and there is no intermolecular attraction exist between molecules of ideal gases.
Molecular size and mass of
is high as compared to
.
van der Waals intermolecular forces of attraction increases with increase in size.
Therefore,
Order of increasing strength of intermolecular attraction will be:
>
>
> Ar
The solution 550 ml total and first we will find the amount of alcohol. 3% = 0.03 550 ml x .03 = 16.5 ml alcohol
Then to find the amount of water used, we just have to subtract the amount of alcohol from the total volume
550 ml total - 16.5 ml alcohol = 533.5 ml water