Hello, let's note A the matrix, we need to find
such that A
=
I, where I is the identity matrix, so the determinant is 0, giving us the characteristic equation as

We just need to solve this equation using the discriminant.

And then the eigenvalues are.

To find the basis, we have to solve the system of equations.
![A\lambda_1-\lambda_1 I=\left[\begin{array}{cc}3i&3\\-3&3i\end{array}\right] \\\\=3\left[\begin{array}{cc}i&1\\-1&i\end{array}\right] \\\\\text{For a vector (a,b), we need to find a and b such that.}\\\\\begin{cases}ai+b=0\\-a+bi=0\end{cases}\\\\\text{(1,-i) is a base of this space, as i-i=0 and -1-}i^2\text{=-1+1=0.}](https://tex.z-dn.net/?f=A%5Clambda_1-%5Clambda_1%20I%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3i%263%5C%5C-3%263i%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%3D3%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Di%261%5C%5C-1%26i%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5Ctext%7BFor%20a%20vector%20%28a%2Cb%29%2C%20we%20need%20to%20find%20a%20and%20b%20such%20that.%7D%5C%5C%5C%5C%5Cbegin%7Bcases%7Dai%2Bb%3D0%5C%5C-a%2Bbi%3D0%5Cend%7Bcases%7D%5C%5C%5C%5C%5Ctext%7B%281%2C-i%29%20is%20a%20base%20of%20this%20space%2C%20as%20i-i%3D0%20and%20-1-%7Di%5E2%5Ctext%7B%3D-1%2B1%3D0.%7D)
![A\lambda_2-\lambda_2 I=\left[\begin{array}{cc}-3i&3\\-3&-3i\end{array}\right] \\\\=3\left[\begin{array}{cc}-i&1\\-1&-i\end{array}\right]\\\\\text{For a vector (a,b), we need to find a and b such that.}\\\\\begin{cases}-ai+b=0\\-a-bi=0\end{cases}\\\\\text{(1,i) is a base of this space as -i+i=0 and -1-i*i=0.}](https://tex.z-dn.net/?f=A%5Clambda_2-%5Clambda_2%20I%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-3i%263%5C%5C-3%26-3i%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%3D3%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-i%261%5C%5C-1%26-i%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5Ctext%7BFor%20a%20vector%20%28a%2Cb%29%2C%20we%20need%20to%20find%20a%20and%20b%20such%20that.%7D%5C%5C%5C%5C%5Cbegin%7Bcases%7D-ai%2Bb%3D0%5C%5C-a-bi%3D0%5Cend%7Bcases%7D%5C%5C%5C%5C%5Ctext%7B%281%2Ci%29%20is%20a%20base%20of%20this%20space%20as%20-i%2Bi%3D0%20and%20-1-i%2Ai%3D0.%7D)
Thank you
THE MULTIPLE OF 3 ARE: 3 , 6 , 9 ,12
The 1st magazine costs either 3 or 6 or 9 , 12
The 2nd magazine costs <span>3 or 6 or 9 , 12
The value 12 is to be discarded , then are the sum of tall possibilities to get 12:
</span>mag 1st mag 2nd total
------------ ------------ --------
3 9 12
6 6 12
9 3 12
Just think about how far you’ve made it in life. however old you are is already an accomplishment by itself. hope this helped ❣️