Answer:
Please find attached the required inverse of a function chart
Step-by-step explanation:
The inverse of a function is found by reversing the operations of the function
The inverse of the function f(x) = 2·x - 4 is found as follows;
x = 2·x - 4
x + 4 = 2·x
x = (x + 4)/2 = x/2 + 2
Therefore, the inverse of the function f(x) = 2·x - 4 is f(x) = x/2 + 2
The inverse function is plotted by generating data points as follows;
x
f(x)
0 2
1 2.5
2 3
3 3.5
4 4
5 4.5
6 5
7 5.5
8 6
9 6.5
10 7
11
7.5
12
8
13 8.5
14 9
15 9.5
16 10
Answer: 2.76 g
Step-by-step explanation:
The formula to find the standard deviation:-

The given data values : 560 g, 562 g, 556 g, 558 g, 560 g, 556 g, 559 g, 561 g, 565 g, 563 g.
Then, 
Now, 
Then, 
Hence, the standard deviation of his measurements = 2.76 g
Answer:
R3 <= 0.083
Step-by-step explanation:
f(x)=xlnx,
The derivatives are as follows:
f'(x)=1+lnx,
f"(x)=1/x,
f"'(x)=-1/x²
f^(4)(x)=2/x³
Simialrly;
f(1) = 0,
f'(1) = 1,
f"(1) = 1,
f"'(1) = -1,
f^(4)(1) = 2
As such;
T1 = f(1) + f'(1)(x-1)
T1 = 0+1(x-1)
T1 = x - 1
T2 = f(1)+f'(1)(x-1)+f"(1)/2(x-1)^2
T2 = 0+1(x-1)+1(x-1)^2
T2 = x-1+(x²-2x+1)/2
T2 = x²/2 - 1/2
T3 = f(1)+f'(1)(x-1)+f"(1)/2(x-1)^2+f"'(1)/6(x-1)^3
T3 = 0+1(x-1)+1/2(x-1)^2-1/6(x-1)^3
T3 = 1/6 (-x^3 + 6 x^2 - 3 x - 2)
Thus, T1(2) = 2 - 1
T1(2) = 1
T2 (2) = 2²/2 - 1/2
T2 (2) = 3/2
T2 (2) = 1.5
T3(2) = 1/6 (-2^3 + 6 *2^2 - 3 *2 - 2)
T3(2) = 4/3
T3(2) = 1.333
Since;
f(2) = 2 × ln(2)
f(2) = 2×0.693147 =
f(2) = 1.386294
Since;
f(2) >T3; it is significant to posit that T3 is an underestimate of f(2).
Then; we have, R3 <= | f^(4)(c)/(4!)(x-1)^4 |,
Since;
f^(4)(x)=2/x^3, we have, |f^(4)(c)| <= 2
Finally;
R3 <= |2/(4!)(2-1)^4|
R3 <= | 2 / 24× 1 |
R3 <= 1/12
R3 <= 0.083
https://rosemont.scusd.edu/sites/main/files/file-attachments/010516_answers_to_last_nights_hw.pdf