Answer:
21.77% probability that the proportion who are satisfied with the way that things are going in their life exceeds 0.85
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
For proportions p in a sample of size n, we have that 
In this problem:

In a sample of 100 Americans, what is the probability that the proportion who are satisfied with the way that things are going in their life exceeds 0.85
This is 1 subtracted by the pvalue of Z when X = 0.85. So



has a pvalue of 0.7823
1 - 0.7823 = 0.2177
21.77% probability that the proportion who are satisfied with the way that things are going in their life exceeds 0.85
Answer: d
Step-by-step explanation:
The probability of not being purple is the probability of the three other colors. Suppose the number of purple marbles is x. Then we have 20+30+40+x = 90 + x marbles. Then the probability of not being purple is 90/(90+x). If this fraction can have a lowest term for some value of x, then the numerator of this lowest term must be a factor of 90.
Checking through the options, only option D has a non-factor of 90 as its numerator.
Hisuewbw bshs Snajesb shahs s s
Answer:

Step-by-step explanation: