Answer:
The sum of the internal ángles = 360°
(3y+40)° and (3x-70°) are suplementary angles = 180°
then:
(3x-70) + (3y+40) + 120 + x = 360 ⇒ first eq.
(3y+40) + (3x-70) = 180 ⇒ second eq
development:
from the first eq.
3x + x + 3y = 360 + 70 - 40 - 120
4x + 3y = 430 - 160
4x + 3y = 270 ⇒ third eq.
3y = 270 - 4x
y = (270 - 4x) / 3 ⇒ fourth eq.
from the secon eq.:
3y + 3x = 180 + 70 - 40
3y + 3x = 250 - 40
3y + 3x = 210 ⇒ fifth eq.
multiply by -1 the fifth eq and sum with the third eq.
-3y - 3x = -210 ⇒ (fifth eq. *-1)
3y + 4x = 270
⇒ 0 + x = 60
x = 60°
from the fourth eq.
y = (270-4x)/3
y = (270-(4*60)) / 3
y = (270 - 240) / 3
y = 30/3
y = 10°
Probe:
from the first eq.
(3x-70) + (3y+40) + 120 + x = 360
3*60 - 70 + 3*10 + 40 + 120 + 60 = 360
180 - 70 + 30 + 40 + 120 + 60 = 360
180 + 30 + 40 + 120 + 60 - 70 = 360
430 - 70 = 360
Answer:
y = 10
The question is incomplete:
1. A cosmetologist must double his/her salary before the employer con realize any profit from his/her work, Miss, Mead paid Miss, Adams $125,00 per week to start.
2. Miss. Mead pays Miss. Brown $125.00 per week. How much money must Miss. Brown take in for services if Miss. Mead is to realize $50.00 profit on her work? (Conditions on salary are the same as in problem 1)
ODS
a. $275.00 b. $325.00 c. $250.00 d. $300.00
Answer:
d. $300.00
Step-by-step explanation:
Given that a cosmetologist must double her salary before the employer can realize any profit from his/her work, for Miss. Mead to realize $50.00 profit on her work, you would have to determine the amount that doubles the salary of the cosmetologist and add the $50 needed as profit:
Salary= $125*2=$250
$250+$50= $300
According to this, the answer is that for Mead to realize $50.00 profit on her work, Miss. Brown must take $300.
The answer to b is 24×600=14400
24=hours in a day
600=blooded pumped per hour
14400=the amount the blood is pumped a day