5x5x5=125 so it could be x=5
3^2 +(5-2)* 4-6/3
Parenthesis, Exponents, Multiplication/Division, Addition/Subtraction
3^2+3*4- 6/3
9+3*4- 6/3
9+12- 6/3
9+12-2
9+10
19
So your answer is 19.
They are not the same thing.
Answer:
Yes, the shapes are similar. Note, the angles are equivalent and the sides are scales of each other satisfying the requirements for similarly.
Step-by-step explanation:
For a shape to be similar there are two conditions that must be met. (1) Must have equivalent angles (2) Sides must be related by a scalar.
In the two triangles presented, the first condition is met since each triangle has three angles, 90-53-37.
To test if the sides are scalar, each side must be related to a corresponding side of the other triangle with the same scalar.
9/6 = 3/2
12/8 = 3/2
15/10 = 3/2
Alternatively:
6/9 = 2/3
8/12 = 2/3
10/15 = 2/3
Since the relationship of the sides is the scalar 3/2 (Alternatively 2/3), then we can say the triangles meet the second condition.
Given that both conditions are satisfied, then we can say these triangles are similar.
Note, this is a "special case" right triangle commonly referred to as a 3-4-5 right triangle.
Cheers.