First, we construct the reaction equation:
Na₂SO₃ + 2HCl → 2NaCl + SO₂ + H₂O
H₂SO₃ is formed as an intermediate but decomposes to water and SO₂ gas.
279 g * (1 mol/180.559g glucose) * (2 mol ethanol/1 mol glucose) * (46.068g ethanol/1mol) =
142 g ethanol produced
Answer:
Pressure is inversely proportional to the volume of gas.
Explanation:
According to Boyle's law,
The volume of given amount of gas is inversely proportional to the pressure applied on gas at constant volume and number of moles of gas.
Mathematical expression:
P ∝ 1/ V
P = K/V
PV = K
when volume is changed from V1 to V2 and pressure from P1 to P2 then expression will be.
P1V1 = K P2V2 = K
P1V1 = P2V2
Answer:
Sr 2+(aq) + SO42-(aq) → SrSO4(s)
Explanation:
<u>Step 1</u>: Write a properly balanced equation with states:
K2SO4(aq) + Srl2(aq) → 2KI(aq) + SrSO4(s)
<u>Step 2</u>: write the full ionic equation with states. Remember to keep molecules intact. Only states (aq) will dissociate, (s) will not dissociate
. This means SrSO4 won't dissociate.
2K+(aq) + SO42-(aq) + Sr 2+(aq) + 2I-(aq) → 2K+(aq) + 2I-(aq) + SrSO4(s)
<u>Step 3</u>: Balanced net ionic equation
Sr 2+(aq) + SO42-(aq) → SrSO4(s)
Answer:
SN2
Explanation:
The first step of ether cleavage is the protonation of the ether since ROH is a better leaving group than RO-.
The second step of the reaction may proceed by either SN1 or SN2 mechanism depending on the structure of the ether. Methyl and primary ethers react with HI by SN2 mechanism while tertiary ethers react with HI by SN1 mechanism. Secondary ethers react with HI by a mixture of both mechanisms.
Dipentyl ether is a primary ether hence when treated with HI, the reaction with HI proceeds by SN2 mechanism as explained above.