The balanced equation for the reaction is
CO(g) + 2H₂(g) ⇄ CH₃<span>OH(g)
Since given concentrations are at equilibrium state, the expression for the equilibrium constant, k can be written as
k = [</span>CH₃OH(g)] / [CO(g)] [H₂(g) ]²
By substitution,
k = 0.030 M / 0.020 M x (<span>0.072 M</span>)²
k = 289.35 M⁻²
Circulating round the nucleus are the electrons in various orbits of different energy levels. Electrons are negatively charged and represented by the symbol 'e'. In the given image the number of protons are -6. Hence the element in question is Carbon as Carbon has the atomic number 6.
By stirring and increasing temperature, there is an increase in dissolving capacity of the solid solute.
<u>Explanation:</u>
If a solute is added to the solution, it doesn't get dissolve easily then we have to increase the temperature, which in turn increases the movement of the solvent (may be water) and the solute particles, thus increases the dissolving power of the solid solute. One more way is by constant stirring, that is by making more contact among the solvent as well as the solute particles there by increasing the solubility of solid solute.
The volume of a sample of ammonia gas : 5.152 L
<h3>Further explanation</h3>
Given
0.23 moles of ammonia
Required
The volume of a sample
Solution
Assumed on STP
Conditions at T 0 ° C and P 1 atm are stated by STP (Standard Temperature and Pressure). At STP, Vm is 22.4 liters / mol.
So for 0.23 moles :
= 0.23 x 22.4 L
= 5.152 L
Technically the answer would be a